Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Symmetric BEM Formulation and Program Development

瀏覽統計 Email 通知 RSS Feed

  • 簡歷

基本資料

Project title
Symmetric BEM Formulation and Program Development
Code/計畫編號
NSC89-2211-E019-004
Translated Name/計畫中文名
對稱化邊界元素法理論推導與程式開發
 
Project Coordinator/計畫主持人
Jeng-Tzong Chen
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Harbor and River Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=527753
Year
2000
 
Start date/計畫起
01-08-1999
Expected Completion/計畫迄
31-07-2000
 
Bugetid/研究經費
297千元
 
ResearchField/研究領域
土木水利工程
數學
資訊科學--軟體
 

Description

Abstract
本研究以洪宏基教授與陳正宗教授所共同提出的對偶邊界積分方程為架構,發展對稱化邊界元素法。其原理主要是利用對偶架構中四個核函數間 的對稱與轉置對稱關係,配合雙重積分的能量觀念,取代原先點配置(Point Collocation)技巧導得的非對稱邊界元素法。本研究有下列數個優點:(1). 傳統邊界元素影響係數矩陣不對稱的缺點將可避 免。(2).對稱化的邊界元素法於互制問題中將易於 與有限元素法(FEM)結合。(3).由於未知邊界自由度的係數矩陣為對稱,故可減少計算機的記憶空間與計算時間並增加求解的精確度與速度。本研究 為了未知邊界自由度的係數矩要將陣對稱化,故須在傳統邊界積分方程式再將邊點對邊界做一次積 分,而這雙重的強奇異及超強奇異積分,為本研究 的一項重點。最後,本研究發展一套以 FORTRAN 程式撰寫的二維 Laplace場之對稱化邊界元素法程 式,並舉數個二維例子,進行解析與數值驗證,並針對係數矩陣特性與計算精確度等方面探討非對稱與對稱 BEM 的差異。Based on the dual framework derived by Hong and Chen, we developed symmetric boundary element method, instead of conventional BEM. Using the symmetry properties for the four kernels in the dual BEM, the symmetric BE formulation can be derived through double integrations. The main advantages are (1).The unsymmetric influence matrix in the conventional BEM can be avoided, (2).The coupling use with FEM can be easily implemented, and (3).The storage space in memory can be saved, and the solutions can be obtained more efficiently and accurately. The main challenge is that double integrations for the singular and hypersingular kernels should be dealt with. In order to check the influence matrices, not only the test of constant potential but also equilibrium condition were employed. A general program was developed for the Laplace equation. Finally, several examples were demonstrated. The comparisons with the conventional BEM and the symmetric BEM on memory storage, efficiency, and accuracy were discussed.
 
Keyword(s)
對偶邊界積分方程
對稱化對偶邊界元素法
葛利金法
奇異值分解法
阿達馬主值
超強奇異積分;
對偶級數表示模式
雙重積分
Dual boundary integral equations
Symmetric dual boundary element method
Galerkin method
Singular value decomposition (SVD)
Hadamard principal value
Hypersingularity
Dual series representation
Double integration
 
瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋