Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Optimization of Air-System Configuration in Warship Underwater Compartment

View Statistics Email Alert RSS Feed

  • Information

Details

Project title
Optimization of Air-System Configuration in Warship Underwater Compartment
Code/計畫編號
MOST109-2623-E019-002-D
Translated Name/計畫中文名
空氣系統水下艙室內配置最佳化研發
 
Project Coordinator/計畫主持人
Shun-Chang Yen
Funding Organization/主管機關
National Science and Technology Council
 
Co-Investigator(s)/共同執行人
單國卿
 
Department/Unit
Department of Mechanical and Mechatronic Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=13377069
Year
2020
 
Start date/計畫起
01-01-2020
Expected Completion/計畫迄
31-12-2020
 
Bugetid/研究經費
730千元
 
ResearchField/研究領域
航空工程
 

Description

Abstract
本計劃書擬議一個系統性的模擬設計與實驗驗證方法,將船舶水下艙間的空氣流動系統,進行應用性的最佳化研發。這是基於,艦艇設計於內部配置規劃包含酬載與裝備,是一項重要參數;影響所及含維生與消防系統、艙間環境、空氣淨化、緊急逃生救難、船艙注水管制、逃生與救難、及環境系統等相關因素,都有莫大影響。如能以空氣流動依據的前提下,搭配先以電腦模擬再行實驗遂行,將變化參數卻認。研究可變的空間變化,使得艦艇內部的空間配置得到最佳化,對艦艇自建與修繕的整體效能有莫大助益。有鑑於此,在此專題研究計畫中;第一年,先搜集尋國內、外軍事艦艇水下艙室資料彙整,並以數值模擬方式,在可改變空間鈍體的寬高比、阻塞比與相對位置的幾何配置機構,建立初步艙室的設計;利用拓樸理論(Topological analysis)的臨界點理論應用與分析;將艙室內空氣流經不同空間或形狀物時,因空間上的巨大梯度以及暫態的變動;進而引誘出大尺度且週期性的運動結構,例如空氣流場的分離(Separation)、再回附迴流泡(Reattachment bubble)、剪力層的不穩定性(Shear-layer instability)、以及渦漩逸放(Vortex shedding)等複雜的流場結構模態定性;結果可將水下艙室雛型模型建置確認。第二年,以煙線流場可視化技術、質點影像速度量測系統(Particle Image Velocimetry, PIV)、拓樸理論的分析應用、熱線風速儀等研究方法交互應用,以尋找出最佳化的設計規則與操作條件,並探討艙室內空氣流的流場行為、幾何配置選取、紊動特性、非穩態流動與尾流的調制能力、以及船艙空間中氣體濃度的分佈。實驗研究過程中,以煙線流場可視化技術將用來觀測空氣流動下巨觀的流體行為,並界定出最佳化的設計規則與操作條件;PIV系統以量化的量測時間相關之非穩態流之演化過程以及與漩渦尾流之交互作用;運用臨界點理論之拓樸學的分析,確定複雜的流場結構模態;熱線風速儀以偵測尾流與剪流層中的頻率特性及高低頻之間的關聯;利用濃度量測儀擷取與追蹤特定氣體濃度,瞭解空間中氣體的分佈。由實驗結果的分析與討論中,找出艦艇水下艙室配置最佳化發展的實務與科學意義。 This project proposes a systematic simulation and experimental methods on the study of airflow system in the underwater compartment of the vessels. The air system is a key parameter on the inner-configuration design of the warships. This configuration design includes the payload and equipment. Furthermore, the air system also has the significant effects on the life-support, fire, compartment environment, air purification, emergency escape/rescue, water-injection control systems. In this project, the computer simulation is studied firstly, and then the experimental method is utilized to check the effects of these parameters. In addition, the variation of these parameters are discussed to optimize the space configuration in the warship. Therefore, the total benefit is improved on the warship construction and maintenance. In the first-year project, the compartment configurations of underwater vessel are collected. The initial design of vessel compartment is constructed numerically using different aspect ratio, blockage ratio and relative position of geometrical configuration. Furthermore, the topological analysis utilizes the critical-point theorem to study the large-scale and periodic flow structures caused from the large pressure gradient and transient flow behavior when the airflow moves through different space and entities in the compartment. These intricate flow structures includes the flow separation, reattachment bubble, shear-layer instability and vortex shedding. These analyzed results is utilized to determine the prototype of the underwater compartment. In the second-year project, the streak-wire flow visualization technique, particle image velocimetry (PIV), topological analysis and hot-wire velocimetry are utilized to optimize the compartment design and flow condition. Furthermore, the flow behavior, geometrical configuration, turbulent property, unsteady flow and wake-flow modulation are also studied. In the experimental research, the steak-wire flow visualization technique is utilized to observe the macroscopic flow behavior and to determine the optimized design rules and operation conditions. The PIV system quantizes the time-dependent evolution process of unsteady flow and the interaction of vortex-shedding wake flow. The topological analysis utilizes the critical-point theory to determine the intricate flow patterns. The hot-wire velocimetry detects the frequency characteristics in the wake flow and shear layer. Furthermore, the hot wire also determine the relationship between high and low frequencies. The concentration distribution is derived theoretically and then is measured using the gas-concentration analyzer. Finally, the numerical simulations and experimental results are analyzed and discussed to determine the optimization arrangement of underwater compartments.
 
Keyword(s)
船舶水下艙間
空氣流動
質點影像速度量測系統
濃度擷取與追蹤
underwater compartment
air flow
particle image velocimetry
concentration acquisition and tracking
 
Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback