Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Feature Extraction Comparisons Based on Two Different Time-Frequency Analysis

瀏覽統計 Email 通知 RSS Feed

  • 簡歷

基本資料

Project title
Feature Extraction Comparisons Based on Two Different Time-Frequency Analysis
Code/計畫編號
NSC97-2115-M019-002
Translated Name/計畫中文名
兩種不同時頻分析的特徵萃取比較
 
Project Coordinator/計畫主持人
Mong-Shu Lee
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Computer Science and Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=1655234
Year
2008
 
Start date/計畫起
01-08-2008
Expected Completion/計畫迄
31-07-2009
 
Bugetid/研究經費
452千元
 
ResearchField/研究領域
數學
資訊科學--軟體
 

Description

Abstract
此計畫主要比較經驗模組分解與對偶樹小波分解轉換兩者在手寫數字分類表現,因為對 偶樹小波轉換改進過去傳統小波轉換不具平移及旋轉不變性的缺點,因此適合用來表示 人為手寫數字的不變性。如果對照以傅立葉為基礎的分解方法,經驗模組分解則是完全 資料取向的,即它將數字本身分解成一些與生俱來的基本模組函數,後者這些函數,顯 然可視為數字影像的特徵,在應用上我們希望能萃取出數字影像的主要特徵,而忽略其 他造成失真的因子,如平移、放大或縮小及旋轉等。初步的實作說明當手寫數字受到平 移影響時,如採用經驗模組分解方法則有較好的分類表現,而整體的辨識結果仍有待進 一步實作驗證。 This project focuses on the performance comparison between EMD (Empirical Mode Decomposition) and DTWT (Dual-Tree Wavelet Transform) for the classification of handwritten digits. The DTWT improves the shift and rotation invariance on the various traditional wavelet transforms, and suits for representing invariant digit characteristics which depends on writers. In contrast to the standard Fourier based decompositions; EMD is fully data-driven method that decomposes the digit images into their intrinsic mode functions which correspond to the features of the digit images. For our application, we will extract the main feature of the digit and ignore the other distorted factors, such as shifting, scaling and rotation. Preliminary experiments demonstrate that the EMD approach achieves better classification result when the handwritten digits are shifted. The overall classification results still need further investigation.
 
Keyword(s)
經驗模組分解
小波轉換
特徵萃取
Empirical mode decomposition
Wavelet transform
Featureextraction
 
Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback