Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

The development for aerial images of multiple crops interpretation modules based on deep learning technology

View Statistics Email Alert RSS Feed

  • Information

Details

Project title
The development for aerial images of multiple crops interpretation modules based on deep learning technology
Code/計畫編號
111農科-1.5.1-資-i7
Translated Name/計畫中文名
深度學習技術輔助多種重要農作物之遙測影像判釋模組開發計畫
 
Funding Organization/主管機關
Council of Agriculture,Executive Yuan
 
Co-Investigator(s)/共同執行人
梁德容(計畫主持人)
王尉任
 
Department/Unit
Department of Computer Science and Information Engineering,NCU
Website
https://www.grb.gov.tw/search/planDetail?id=14577000
Year
2022
 
Start date/計畫起
01-01-2022
Expected Completion/計畫迄
31-12-2022
 
Co-Investigator(s)
Chin-Chun Chang
Bugetid/研究經費
3000千元
 
ResearchField/研究領域
資訊科學--軟體
 

Description

Abstract
<P>深度學習技術可用於自動判釋航空照片中的資訊,例如用辨別農田裡的農作物。儘管它們是個前瞻性技術,但在農田分割或高精準標註資料等仍然具有挑戰。因此本提案提出三個針對不同對象的自動分割和標記問題,第一 ,我們將使用校準航照圖像來建立水稻語義分割模型。其次,我們將開發每個地區不同季節的區域作物判釋模型。第三,提出偵測坵塊異動情形的機器學習方法。今年將繼續使用 2021 年研究的模型繼續優化,來提高性能以解決目標 1 和 2。另一方面,目標 3 是我們今年要解決的新課題。在分割和標記模型開發完成之後,我們將使用航照圖來評估所提出模型的效率是否達到我們訂定的目標。。</P> <P>Deep learning technologies can be used to automatically interpret aerial photographs, such as labeling agricultural fields with their types. Even though they are promising technologies, high accuracy in segmenting and labeling agricultural fields remains challenging. This proposal focuses on the issue of automatic segmentation and labeling. There are three research goals in this proposal. First, we will use calibrated aerial images for building rice semantic segmentation models. Second, we will develop regional crop interpretation models for different crops in different seasons in each region. Third, find the machine learning methods for parcel classification. In this year, the model from 2021 research will be used and we will still improve the performance to solve goals 1 and 2. On the other hand, goal 3 is the new topic we want to solve for this year. After the development of the segmentation and labeling models, we will use aerial photographs to evaluate the efficiency of the proposed models.</P>
 
Keyword(s)
卷積神經網路
農作物辨識
影像分割
航攝影像
深度學習
Convolutional Neural Networks
Crop Recognition
Image Segmentation
Aerial Photograph Images
Deep Learning
 
Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback