Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Synthesis of Self-Assembled Spermidine-Carbon Quantum Dots Effective against Multidrug-Resistant Bacteria

View Statistics Email Alert RSS Feed

  • Information

Details

Project title
Synthesis of Self-Assembled Spermidine-Carbon Quantum Dots Effective against Multidrug-Resistant Bacteria
Code/計畫編號
MOST105-2633-B019-001
Project Coordinator/計畫主持人
Shiow-Yi Chen
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Bioscience and Biotechnology
Website
https://www.grb.gov.tw/search/planDetail?id=11917756
Year
2016
 
Start date/計畫起
01-08-2016
Expected Completion/計畫迄
31-07-2017
 
Bugetid/研究經費
751千元
 
ResearchField/研究領域
基礎醫學
 

Description

Abstract
Multi-drug resistant bacterial infection is the most difficult problem encountered in antibiotic applications in modern days. Many recent researches have confirmed that many nanomaterials (metal nanoparticles and metal-oxide nanoparticles) are capable of treating multi-drug resistant infections. The preparation of these nanoparticles, however, are complicated and expensive, and the nanoparticles possess low biocompatibility, thus limiting their practical use. The objective of this proposal is to develop polyamine-capped fluorescent carbon quantum dots as less harmful antibacterial nanoparticles. We will utilize two-step method to synthesize polyamine-carbon quantum dots (PA-CQDs) for inhibiting bacterial growth. First, the fluorescent carbon quantum dots (CQDs) will be synthesized by pyrolysis (150-300 oC) of ammonium citrate in the solid state and then they will be modified with different ratio of polyamine (putrescine, cadaverine, spermidine or spermine) to CQDs by a simple dry heating method under different reaction temperatures (150-300 oC). The presence of poly-amine groups on the surface of PA -CQDs will result in positively charged nanoparticles (zeta potential > 30 mV) with a relatively small particle size (3-5 nm). Thus PA-CQDs can bind strongly to the bacterial cell membrane and cause its perforation, and inhibition of bacterial growth. We will test the antimicrobial effect of synthesized PA-CQDs on not only the non-multi-drug resistant E. coli, P. aeruginosa, B. subtilis, and S. aureus bacteria but also the multi-drug resistant (MDR) bacteria such as methicillin-resistant S. aureus (MRSA). We will investigate the biocompatibility of PA-CQDs via in vitro cytotoxicity and hemolysis analyses. In addition, we will use SD rats as the experimental animal model to assess the antibacterial experiments. We plan to create wounds on the two sides of the dorsum and infect the wounds with MRSA. Then PA-CQDs will be applied to the wounds as a dressing material and the progress of wound healing will be observed. We expect this nanomaterial to be effectively applied on treating bacterial infected organisms. 多重抗藥性細菌感染是目前抗生素治療最棘手的問題,為解決這問題,近期研究證 實許多奈米材料(金屬與金屬氧化物奈米粒子)具治療多重抗藥性感染之功能;但此類奈 米粒子製成相當複雜、昂貴且生物相容性低,因此於抗菌藥物應用上仍有相當大的限 制。本計劃預計開發碳材奈米粒子結合多胺類來製備抗菌奈米粒子。我們將開發兩步合 成法修飾多胺類之石炭量子點(polyamine-carbon quantum dots,PA-CQDs)應用於抑制細 菌生長。首先使用擰檬酸銨乾燒(150-300 °C)製成螢光CQDs,接著將CQDs粉末與多 胺類[腐胺(putrescine)、屍胺(cadaverine)、亞精胺(spermidine)和精胺(spermine)等]以 不同比例混合,再測試溫度對多胺化合物熱裂並燒結於CQDs上情形。多胺類修飾之 CQDs其表面多胺基會使粒子表面具高正電性,藉由此材料粒徑小(3-5 nm)且表面具大 量正電荷(zeta potential > 30 mV)可與細菌之細胞膜有很強鍵結,並可能會造成細菌穿 孔而死亡,藉此達到抑制細菌的生長效果。在本計劃我們不僅將測試所合成PA-CQDs 於大腸桿菌(E. coli)、綠膿桿菌(P aeruginosa)、枯草芽孢桿菌(B. subtilis)與金黃色葡萄 球菌(&伽reus)抑制效果,且亦測試其對多抗藥性金黃色葡萄球菌(MRSA)抑制效果。進 一步評估最佳抑菌的PA-CQDs之生物相容性,如體外細胞毒性和溶血分析。此外,我 們以SD大鼠進行動物抑菌實驗測試,於其背部兩側開創並使其傷口感染MRSA,並以 PA-CQDs作為敷料觀察其傷口癒合程度,期望此材料能有效應用於生物體細菌感染上。
 
 
Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback