Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1038
DC FieldValueLanguage
dc.contributor.authorYu-Lung Changen_US
dc.contributor.authorYing-Te Leeen_US
dc.contributor.authorLi-Jie Jiangen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.date.accessioned2020-11-16T07:09:59Z-
dc.date.available2020-11-16T07:09:59Z-
dc.date.issued2016-03-07-
dc.identifier.issn1793-6969-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1038-
dc.description.abstractA systematic approach of using the null-field integral equation in conjunction with the degenerate kernel and eigenfunction expansion is employed to solve three-dimensional (3D) Green’s functions of Laplace equation. The purpose of using degenerate kernels for interior and exterior expansions is to avoid calculating the principal values. The adaptive observer system is addressed to employ the property of degenerate kernels in the spherical coordinates and in the prolate spheroidal coordinates. After introducing the collocation points on each boundary and matching boundary conditions, a linear algebraic system is obtained without boundary discretization. Unknown coefficients can be easily determined. Finally, several examples are given to demonstrate the validity of the present approach.en_US
dc.language.isoen_USen_US
dc.publisherWorld Scientificen_US
dc.relation.ispartofInternational Journal of Computational Methodsen_US
dc.subjectLaplace equationen_US
dc.subjectdegenerate kernelen_US
dc.subjectnull-field boundary integral equationen_US
dc.subjectGreen's functionen_US
dc.subjectprolate spheroiden_US
dc.titleGreen's Function Problem of Laplace Equation with Spherical and Prolate Spheroidal Boundaries by Using the Null-Field Boundary Integral Equationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1142/s0219876216500201-
dc.relation.journalvolume13en_US
dc.relation.journalissue5en_US
dc.relation.pages1650020en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
checked on Apr 9, 2021

Page view(s)

220
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback