Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1048
DC FieldValueLanguage
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorKao, S. K.en_US
dc.contributor.authorLee, W. M.en_US
dc.contributor.authorYing-Te Leeen_US
dc.date.accessioned2020-11-16T07:10:00Z-
dc.date.available2020-11-16T07:10:00Z-
dc.date.issued2010-05-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1048-
dc.description.abstractIn this paper, 2D eigenproblems with the multiply connected domain are studied by using the multipole Trefftz method. We extend the conventional Trefftz method to the multipole Trefftz method by introducing the multipole expansion. The addition theorem is employed to expand the Trefftz bases to the same polar coordinates centered at one circle, where boundary conditions are specified. Owing to the introduction of the addition theorem, collocation techniques are not required to construct the linear algebraic system. Eigenvalues and eigenvectors can be found at the same time by employing the singular value decomposition (SVD). To deal with the eigenproblems, the present method is free of pollution of spurious eigenvalues. Both the eigenvalues and eigenmodes compare well with those obtained by analytical methods and the BEM as shown in illustrative examples.en_US
dc.language.isoen_USen_US
dc.publisherScienceDirecten_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectMultipole Trefftz methoden_US
dc.subjectMultiply connected domainen_US
dc.subjectEigenvalueen_US
dc.subjectEigenproblemen_US
dc.subjectHelmholtz equationen_US
dc.titleEigensolutions of the Helmholtz equation for a multiply connected domain with circular boundaries using the multipole Trefftz methoden_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2009.11.006-
dc.relation.journalvolume34en_US
dc.relation.journalissue5en_US
dc.relation.pages463-470en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

22
Last Week
0
Last month
0
checked on Jun 19, 2023

Page view(s)

133
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback