Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1058
DC FieldValueLanguage
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorYing-Te Leeen_US
dc.contributor.authorJia-Wei Leeen_US
dc.date.accessioned2020-11-16T07:10:01Z-
dc.date.available2020-11-16T07:10:01Z-
dc.date.issued2010-04-11-
dc.identifier.issn1432-0924-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1058-
dc.description.abstractFollowing the success of using the null-field integral approach to determine the torsional rigidity of a circular bar with circular inhomogeneities (Chen and Lee in Comput Mech 44(2):221–232, 2009), an extension work to an elliptic bar containing elliptic inhomogeneities is done in this paper. For fully utilizing the elliptic geometry, the fundamental solutions are expanded into the degenerate form by using the elliptic coordinates. The boundary densities are also expanded by using the Fourier series. It is found that a Jacobian term may exist in the degenerate kernel, boundary density or boundary contour integral and cancel out to each other. Null-field points can be exactly collocated on the real boundary free of facing the principal values using the bump contour approach. After matching the boundary condition, a linear algebraic system is constructed to determine the unknown coefficients. An example of an elliptic bar with two inhomogeneities under the torsion is given to demonstrate the validity of the present approach after comparing with available results.en_US
dc.language.isoen_USen_US
dc.publisherSpringeren_US
dc.relation.ispartofComputational Mechanicsen_US
dc.subjectTorsional rigidityen_US
dc.subjectNull-field integral equationen_US
dc.subjectDegenerate kernelen_US
dc.subjectElliptic coordinatesen_US
dc.subjectJacobianen_US
dc.titleTorsional rigidity of an elliptic bar with multiple elliptic inclusions using a null-field integral approachen_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s00466-010-0493-1-
dc.relation.journalvolume46en_US
dc.relation.journalissue4en_US
dc.relation.pages511-519en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

22
Last Week
0
Last month
0
checked on Jun 19, 2023

Page view(s)

146
Last Week
1
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback