Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1059
DC 欄位值語言
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorYing-Te Leeen_US
dc.contributor.authorJia-Wei Leeen_US
dc.contributor.authorSheng-Kuang Chenen_US
dc.date.accessioned2020-11-16T07:10:01Z-
dc.date.available2020-11-16T07:10:01Z-
dc.date.issued2020-05-
dc.identifier.issn2158-7299-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1059-
dc.description.abstractThe influence matrix may be of deficient rank in the specified scale when we have solved the 2D elasticity problem by using the boundary element method (BEM). This problem stems from lnr in the 2D Kelvin solution. On the other hand, the single-layer integral operator can not represent the constant term for the degenerate scale in the boundary integral equation method (BIEM). To overcome this problem, we have proposed the enriched fundamental solution containing an adaptive characteristic length to ensure that the argument in the logarithmic function is dimensionless. The adaptive characteristic length, depending on the domain, differs from the constant base by adding a rigid body mode. In the analytical study, the degenerate kernel for the fundamental solution in polar coordinates is revisited. An adaptive characteristic length analytically provides the deficient constant term of the ordinary 2D Kelvin solution. In numerical implementation, adaptive characteristic lengths of the circular boundary, the regular triangular boundary and the elliptical boundary demonstrate the feasibility of the method. By employing the enriched fundamental solution in the BEM/BIEM, the results show the degenerate scale free.en_US
dc.language.isoen_USen_US
dc.publisherTaylor & Francisen_US
dc.relation.ispartofJournal of the Chinese Institute of Engineersen_US
dc.subjectBoundary element methoden_US
dc.subject2D elasticity problemen_US
dc.subjectdegenerate scaleen_US
dc.subjectcharacteristic lengthen_US
dc.titleA study on the degenerate scale by using the fundamental solution with dimensionless argument for 2D elasticity problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1080/02533839.2020.1721333-
dc.relation.journalvolume43en_US
dc.relation.journalissue4en_US
dc.relation.pages373-385en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

1
上周
0
上個月
0
checked on 2023/6/19

Page view(s)

216
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋