Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1064
DC FieldValueLanguage
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorYing-Te Leeen_US
dc.contributor.authorShang-Ru Yuen_US
dc.contributor.authorShiang-Chih Shiehen_US
dc.date.accessioned2020-11-16T07:10:02Z-
dc.date.available2020-11-16T07:10:02Z-
dc.date.issued2009-05-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1064-
dc.description.abstractIn this paper, the Green's function for the annular Laplace problem is first derived by using the image method which can be seen as a special case of method of fundamental solutions. Three cases, fixed–fixed, fixed–free and free–fixed boundary conditions are considered. Also, the Trefftz method is employed to derive the analytical solution by using T-complete sets. By employing the addition theorem, both solutions are found to be mathematically equivalent when the number of Trefftz base and the number of image points are both infinite. On the basis of the same number of degrees of freedom, the convergence rate of both methods is compared with each other. In the successive image process, the final two images freeze at the origin and infinity, where their singularity strengths can be analytically and numerically determined in a consistent manner.en_US
dc.language.isoen_USen_US
dc.publisherScienceDirecten_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectGreen's functionen_US
dc.subjectMethod of fundamental solutionsen_US
dc.subjectImage methoden_US
dc.subjectTrefftz methoden_US
dc.titleEquivalence between the Trefftz method and the method of fundamental solution for the annular Green's function using the addition theorem and image concepten_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2008.10.003-
dc.relation.journalvolume33en_US
dc.relation.journalissue5en_US
dc.relation.pages678-688en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

63
Last Week
0
Last month
0
checked on Jun 19, 2023

Page view(s)

149
Last Week
1
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback