Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1067
Title: Water wave interaction with surface-piercing porous cylinders using the null-field integral equations
Authors: Jeng-Tzong Chen 
Lin, Y. J.
Ying-Te Lee 
Wu, C. F.
Keywords: Addition theorem;Null-field integral equation;Fourier series;Trapped mode;Porous cylinder;Water wave
Issue Date: Feb-2011
Publisher: ScienceDirect
Journal Volume: 38
Journal Issue: 2-3
Start page/Pages: 409-418
Source: Ocean Engineering 
Abstract: 
Following the successful experiences of solving water wave scattering problems for multiple impermeable cylinders by the authors' group, we extend the null-field integral formulation in conjunction with the addition theorem and the Fourier series to deal with the problems of surface-piercing porous cylinders in this paper. In the implementation, the null-field point can be exactly located on the real boundary free of calculating the Cauchy and Hadamard principal values, thanks to the introduction of degenerate kernels (or separable kernels) for fundamental solutions. This method is a semi-analytical approach, since errors attribute from the truncation of the Fourier series. Not only a systematic approach is proposed but also the effect on the near-trapped modes due to porous cylinders and disorder of layout is examined. Several advantages such as mesh-free generation, well-posed model, principal value free, elimination of boundary-layer effect and exponential convergence, over the conventional boundary element method (BEM) are achieved. It is found that the disorder has more influence to suppress the occurrence of near-trapped modes than the porosity. The free-surface elevation is consistent with the results of William and Li and those using the conventional BEM. Besides, the numerical results of the force on the surface of cylinders agree well with those of William and Li. Besides, the present method is a semi-analytical approach for problems containing circular and elliptical shapes at the same time.
URI: http://scholars.ntou.edu.tw/handle/123456789/1067
ISSN: 0029-8018
DOI: 10.1016/j.oceaneng.2010.11.006
Appears in Collections:河海工程學系

Show full item record

WEB OF SCIENCETM
Citations

28
Last Week
0
Last month
0
checked on Jun 19, 2023

Page view(s)

28
Last Week
0
Last month
0
checked on Oct 13, 2022

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback