Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1072
DC FieldValueLanguage
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorC.S. Wuen_US
dc.contributor.authorYing-Te Leeen_US
dc.contributor.authorK.H. Chenen_US
dc.date.accessioned2020-11-16T07:10:03Z-
dc.date.available2020-11-16T07:10:03Z-
dc.date.issued2007-03-
dc.identifier.issn0898-1221-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1072-
dc.description.abstractIn this paper, it is proved that the two approaches, known in the literature as the method of fundamental solutions (MFS) and the Trefftz method, are mathematically equivalent in spite of their essentially minor and apparent differences in formulation. In deriving the equivalence of the Trefftz method and the MFS for the Laplace and biharmonic problems, it is interesting to find that the complete set in the Trefftz method for the Laplace and biharmonic problems are embedded in the degenerate kernels of the MFS. The degenerate scale appears using the MFS when the geometrical matrix is singular. The occurring mechanism of the degenerate scale in the MFS is also studied by using circulant. The comparison of accuracy and efficiency of the two methods was addressed.en_US
dc.language.isoen_USen_US
dc.publisherScienceDirecten_US
dc.relation.ispartofComputers & Mathematics with Applicationsen_US
dc.subjectMethod of fundamental solutionsen_US
dc.subjectTrefftz methoden_US
dc.subjectDegenerate scaleen_US
dc.subjectCirculanten_US
dc.subjectCondition numberen_US
dc.titleOn the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.camwa.2005.02.021-
dc.relation.journalvolume53en_US
dc.relation.journalissue6en_US
dc.relation.pages851-879en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

99
Last Week
0
Last month
0
checked on Jun 19, 2023

Page view(s)

432
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback