Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1073
DC FieldValueLanguage
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorJheng-Lin Yangen_US
dc.contributor.authorYing-Te Leeen_US
dc.contributor.authorYu-Lung Changen_US
dc.date.accessioned2020-11-16T07:10:03Z-
dc.date.available2020-11-16T07:10:03Z-
dc.date.issued2014-09-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1073-
dc.description.abstractMotivated by the incompleteness of single-layer potential approach for the interior problem with a degenerate-scale domain and the exterior problem with bounded potential at infinity, we revisit the method of fundamental solutions (MFS). Although the MFS is an easy method to implement, it is not complete for solving not only the interior 2D problem in case of a degenerate scale but also the exterior problem with bounded potential at infinity for any scale. Following Fichera׳s idea for the boundary integral equation, we add a free constant and an extra constraint to the traditional MFS. The reason why the free constant and extra constraints are both required is clearly explained by using the degenerate kernel for the closed-form fundamental solution. Since the range of the single-layer integral operator lacks the constant term in the case of a degenerate scale for a two dimensional problem, we add a constant to provide a complete base. Due to the rank deficiency of the influence matrix in the case of a degenerate scale, we can promote the rank by simultaneously introducing a constant term and adding an extra constraint to enrich the MFS. For an exterior problem, the fundamental solution does not contain a constant field in the degenerate kernel expression. To satisfy the bounded potential at infinity, the sum of all source strengths must be zero. The formulation of the enriched MFS can solve not only the degenerate-scale problem for the interior problem but also the exterior problem with bounded potential at infinity. Finally, three examples, a circular domain, an infinite domain with two circular holes and an eccentric annulus were demonstrated to see the validity of the enriched MFS.en_US
dc.language.isoen_USen_US
dc.publisherScienceDirecten_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectMethod of fundamental solutionsen_US
dc.subjectFichera׳s methoden_US
dc.subjectDegenerate scaleen_US
dc.subjectDegenerate kernelen_US
dc.titleFormulation of the MFS for the two-dimensional Laplace equation with an added constant and constrainten_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2014.04.018-
dc.relation.journalvolume46en_US
dc.relation.pages96-107en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

15
checked on Apr 7, 2021

Page view(s)

170
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback