Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1073
DC 欄位值語言
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorJheng-Lin Yangen_US
dc.contributor.authorYing-Te Leeen_US
dc.contributor.authorYu-Lung Changen_US
dc.date.accessioned2020-11-16T07:10:03Z-
dc.date.available2020-11-16T07:10:03Z-
dc.date.issued2014-09-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1073-
dc.description.abstractMotivated by the incompleteness of single-layer potential approach for the interior problem with a degenerate-scale domain and the exterior problem with bounded potential at infinity, we revisit the method of fundamental solutions (MFS). Although the MFS is an easy method to implement, it is not complete for solving not only the interior 2D problem in case of a degenerate scale but also the exterior problem with bounded potential at infinity for any scale. Following Fichera׳s idea for the boundary integral equation, we add a free constant and an extra constraint to the traditional MFS. The reason why the free constant and extra constraints are both required is clearly explained by using the degenerate kernel for the closed-form fundamental solution. Since the range of the single-layer integral operator lacks the constant term in the case of a degenerate scale for a two dimensional problem, we add a constant to provide a complete base. Due to the rank deficiency of the influence matrix in the case of a degenerate scale, we can promote the rank by simultaneously introducing a constant term and adding an extra constraint to enrich the MFS. For an exterior problem, the fundamental solution does not contain a constant field in the degenerate kernel expression. To satisfy the bounded potential at infinity, the sum of all source strengths must be zero. The formulation of the enriched MFS can solve not only the degenerate-scale problem for the interior problem but also the exterior problem with bounded potential at infinity. Finally, three examples, a circular domain, an infinite domain with two circular holes and an eccentric annulus were demonstrated to see the validity of the enriched MFS.en_US
dc.language.isoen_USen_US
dc.publisherScienceDirecten_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectMethod of fundamental solutionsen_US
dc.subjectFichera׳s methoden_US
dc.subjectDegenerate scaleen_US
dc.subjectDegenerate kernelen_US
dc.titleFormulation of the MFS for the two-dimensional Laplace equation with an added constant and constrainten_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2014.04.018-
dc.relation.journalvolume46en_US
dc.relation.pages96-107en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

15
checked on 2021/4/7

Page view(s)

170
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋