Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1076
標題: Numerical Solutions of Two-dimensional Stokes Flows by the Boundary Knot Method
作者: Fan, CM 
Huang, YK
Li, PW
Lee, YT 
關鍵字: Boundary knot method;two-dimensional Stokes flow;boundary-type meshless method;non-singular general solution;shape parameter
公開日期: 四月-2015
卷: 105
期: 6
起(迄)頁: 491-515
來源出版物: Cmes-Computer Modeling in Engineering & Sciences
摘要: 
In this paper, the boundary knot method (BKM) is adopted for accurately analyzing two-dimensional Stokes flows, dominated by viscous force and pressure gradient force. The Stokes flows, which denoted the flow fields with extremely viscous fluid or with very small velocity, appear in various engineering applications, such that it is very important to develop an efficient and accurate numerical method to solve the Stokes equations. The BKM, which can avoid the controversial fictitious boundary for sources, is an integral-free boundary-type meshless method and its solutions are expressed as linear combinations of non-singular general solutions for Stokes equations. The weighting coefficients in the solution expressions can be acquired by enforcing the satisfactions. of boundary conditions at every boundary node, since the non-singular general solutions are derived in this paper and already satisfied the Stokes equations. Three examples of two-dimensional Stokes flows. were adopted to validate the accuracy and the simplicity of the BKM. Besides, the optimal shape parameter in the non-singular general solutions was determined by examining the minimum average residual of the linear system from the BKM.
URI: http://scholars.ntou.edu.tw/handle/123456789/1076
ISSN: 1526-1492
顯示於:河海工程學系

顯示文件完整紀錄

Page view(s)

171
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋