Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1078
Title: Null-field approach for the antiplane problem with elliptical holes and/or inclusions
Authors: Ying-Te Lee 
Jeng-Tzong Chen 
Keywords: B. Elasticity;B. Fiber/matrix bond;B. Defects;C. Numerical analysis
Issue Date: Jan-2013
Publisher: ScienceDirect
Journal Volume: 44
Journal Issue: 1
Start page/Pages: 283-294
Source: Composites Part B: Engineering 
Abstract: 
In this paper, we extend the successful experience of solving an infinite medium containing circular holes and/or inclusions subject to remote shears to deal with the problem containing elliptical holes and/or inclusions. Arbitrary location, different orientation, various size and any number of elliptical holes and/or inclusions can be considered. By fully employing the elliptical geometry, fundamental solutions were expanded into the degenerate kernel by using an addition theorem in terms of the elliptic coordinates and boundary densities are described by using the eigenfunction expansion. The difference between the proposed method and the conventional boundary integral equation method is that the location point can be exactly distributed on the real boundary without facing the singular integral and calculating principal value. Besides, the boundary stress can be easily calculated free of the Hadamard principal values. It is worthy of noting that the Jacobian terms exist in the degenerate kernel, boundary density and contour integral; however, these Jacobian terms would cancel each other out and the orthogonal property is preserved in the process of contour integral. This method belongs to one kind of meshless methods since only collocation points on the real boundary are required. In addition, the solution is regarded as semi-analytical form because error purely attributes to the number of truncation term of eigenfunction. An exact solution for a single elliptical inclusion is also derived by using the proposed approach and the results agree well with Smith’s solutions by using the method of complex variables. Several examples are revisited to demonstrate the validity of our method.
URI: http://scholars.ntou.edu.tw/handle/123456789/1078
ISSN: 1359-8368
DOI: 10.1016/j.compositesb.2012.05.025
Appears in Collections:河海工程學系

Show full item record

WEB OF SCIENCETM
Citations

18
Last Week
0
Last month
0
checked on Jun 19, 2023

Page view(s)

235
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback