Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1140
DC FieldValueLanguage
dc.contributor.authorBai Zi-Qiangen_US
dc.contributor.authorGu Yanen_US
dc.contributor.authorFan Chia-Mingen_US
dc.date.accessioned2020-11-16T09:46:38Z-
dc.date.available2020-11-16T09:46:38Z-
dc.date.issued2019-07-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1140-
dc.description.abstractIn this study, a new framework for the numerical solutions of inhomogeneous Helmholtz-type equations on three-dimensional (3D) arbitrary domains is presented. A Chebyshev collocation scheme (CCS) is introduced for the efficient and accurate approximation of particular solution for the given 3D boundary value problem. We collocate the numerical scheme at the Gauss–Lobatto nodes to ensure the pseudo-spectral convergence of the Chebyshev interpolation. After the particular solution is evaluated, the introduced CCS is coupled with a two-stage and one-stage numerical schemes to evaluate the final solutions of the given problem. In the two-stage approach, the given inhomogeneous problem is converted to a homogeneous equation and then the boundary-type methods, such as the method of fundamental solutions (MFS), can be used to evaluate the resulting homogeneous solutions. In the one-stage scheme, by imposing the boundary conditions directly to the CCS procedure, the final solutions of the given inhomogeneous problem can be obtained straightforward without the need of using the MFS or other boundary methods to find the homogeneous solution. Two benchmark numerical examples in both smooth and piecewise smooth 3D geometries are presented to demonstrate the applicability and efficiency of the proposed method.en_US
dc.language.isoenen_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectMeshless methoden_US
dc.subjectChebyshev polynomialsen_US
dc.subjectParticular solutionsen_US
dc.subjectThe method of fundamental solutionsen_US
dc.subjectThree-dimensional Helmholtz-type equationen_US
dc.titleA direct Chebyshev collocation method for the numerical solutions of three-dimensional Helmholtz-type equationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2019.03.023-
dc.identifier.isiWOS:000469522100003-
dc.relation.journalvolume104en_US
dc.relation.pages26-33en_US
item.grantfulltextnone-
item.fulltextno fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypejournal article-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

15
checked on Oct 24, 2022

Page view(s)

169
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback