Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1140
DC 欄位值語言
dc.contributor.authorBai Zi-Qiangen_US
dc.contributor.authorGu Yanen_US
dc.contributor.authorFan Chia-Mingen_US
dc.date.accessioned2020-11-16T09:46:38Z-
dc.date.available2020-11-16T09:46:38Z-
dc.date.issued2019-07-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1140-
dc.description.abstractIn this study, a new framework for the numerical solutions of inhomogeneous Helmholtz-type equations on three-dimensional (3D) arbitrary domains is presented. A Chebyshev collocation scheme (CCS) is introduced for the efficient and accurate approximation of particular solution for the given 3D boundary value problem. We collocate the numerical scheme at the Gauss–Lobatto nodes to ensure the pseudo-spectral convergence of the Chebyshev interpolation. After the particular solution is evaluated, the introduced CCS is coupled with a two-stage and one-stage numerical schemes to evaluate the final solutions of the given problem. In the two-stage approach, the given inhomogeneous problem is converted to a homogeneous equation and then the boundary-type methods, such as the method of fundamental solutions (MFS), can be used to evaluate the resulting homogeneous solutions. In the one-stage scheme, by imposing the boundary conditions directly to the CCS procedure, the final solutions of the given inhomogeneous problem can be obtained straightforward without the need of using the MFS or other boundary methods to find the homogeneous solution. Two benchmark numerical examples in both smooth and piecewise smooth 3D geometries are presented to demonstrate the applicability and efficiency of the proposed method.en_US
dc.language.isoenen_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectMeshless methoden_US
dc.subjectChebyshev polynomialsen_US
dc.subjectParticular solutionsen_US
dc.subjectThe method of fundamental solutionsen_US
dc.subjectThree-dimensional Helmholtz-type equationen_US
dc.titleA direct Chebyshev collocation method for the numerical solutions of three-dimensional Helmholtz-type equationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2019.03.023-
dc.identifier.isiWOS:000469522100003-
dc.relation.journalvolume104en_US
dc.relation.pages26-33en_US
item.grantfulltextnone-
item.fulltextno fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypejournal article-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

15
checked on 2022/10/24

Page view(s)

169
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋