Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1143
DC 欄位值語言
dc.contributor.authorHsin-Fang Chanen_US
dc.contributor.authorChia-Ming Fanen_US
dc.contributor.authorChia-Wen Kuoen_US
dc.date.accessioned2020-11-16T09:46:39Z-
dc.date.available2020-11-16T09:46:39Z-
dc.date.issued2013-09-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1143-
dc.description.abstractIn this study, the obstacle problems, also known as the non-linear free boundary problems, are analyzed by the generalized finite difference method (GFDM) and the fictitious time integration method (FTIM). The GFDM, one of the newly-developed domain-type meshless methods, is adopted in this study for spatial discretization. Using GFDM can avoid the tasks of mesh generation and numerical integration and also retain the high accuracy of numerical results. The obstacle problem is extremely difficult to be solved by any numerical scheme, since two different types of governing equations are imposed on the computational domain and the interfaces between these two regions are unknown. The obstacle problem will be mathematically formulated as the non-linear complementarity problems (NCPs) and then a system of non-linear algebraic equations (NAEs) will be formed by using the GFDM and the Fischer–Burmeister NCP-function. Then, the FTIM, a simple and powerful solver for NAEs, is used solve the system of NAEs. The FTIM is free from calculating the inverse of Jacobian matrix. Three numerical examples are provided to validate the simplicity and accuracy of the proposed meshless numerical scheme for dealing with two-dimensional obstacle problems.en_US
dc.language.isoenen_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectObstacle problemsen_US
dc.subjectGeneralized finite difference methoden_US
dc.subjectFictitious time integration methoden_US
dc.subjectMeshless methoden_US
dc.subjectNon-linear free boundary problemsen_US
dc.titleGeneralized finite difference method for solving two-dimensional non-linear obstacle problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2013.05.004-
dc.identifier.isiWOS:000322291900008-
dc.relation.journalvolume37en_US
dc.relation.journalissue9en_US
dc.relation.pages1189-1196en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

59
上周
0
上個月
1
checked on 2023/6/27

Page view(s)

212
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋