Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1151
DC 欄位值語言
dc.contributor.authorChu, HFen_US
dc.contributor.authorFan, CMen_US
dc.contributor.authorYeih, WCen_US
dc.date.accessioned2020-11-16T09:46:40Z-
dc.date.available2020-11-16T09:46:40Z-
dc.date.issued2011-08-
dc.identifier.issn1546-2218-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1151-
dc.description.abstractThe inverse boundary optimization problem, governed by the Helmholtz equation, is analyzed by the Trefftz method (TM) and the exponentially convergent scalar homotopy algorithm (ECSHA). In the inverse boundary optimization problem, the position for part of boundary with given boundary condition is unknown, and the position for the rest of boundary with additionally specified boundary conditions is given. Therefore, it is very difficult to handle the boundary optimization problem by any numerical scheme. In order to stably solve the boundary optimization problem, the TM, one kind of boundary-type meshless methods, is adopted in this study, since it can avoid the generation of mesh grid and numerical integration. In the boundary optimization problem governed by the Helmholtz equation, the numerical solution of TM is expressed as linear combination of the T-complete functions. When this problem is considered by TM, a system of nonlinear algebraic equations will be formed and solved by ECSHA which will converge exponentially. The evolutionary process of ECSHA can acquire the unknown coefficients in TM and the spatial position of the unknown boundary simultaneously. Some numerical examples will be provided to demonstrate the ability and accuracy of the proposed scheme. Besides, the stability of the proposed meshless method will be validated by adding some noise into the boundary conditions.en_US
dc.language.isoenen_US
dc.relation.ispartofCmc-Computers Materials & Continuaen_US
dc.subjectTrefftz methoden_US
dc.subjectexponentially convergent scalar homotopy algorithmen_US
dc.subjectboundary optimization problemen_US
dc.subjectHelmholtz equationen_US
dc.subjectboundary-type meshless methoden_US
dc.subjectinverse problemen_US
dc.titleSolution of Inverse Boundary Optimization Problem by Trefftz Method and Exponentially Convergent Scalar Homotopy Algorithmen_US
dc.typejournal articleen_US
dc.identifier.isiWOS:000297188300002-
dc.relation.journalvolume24en_US
dc.relation.journalissue2en_US
dc.relation.pages125-142en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.orcid0000-0002-5077-865X-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

Page view(s)

147
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋