Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1163
DC 欄位值語言
dc.contributor.authorC.M. Fanen_US
dc.contributor.authorY.K. Huangen_US
dc.contributor.authorC.S. Chenen_US
dc.contributor.authorS.R. Kuoen_US
dc.date.accessioned2020-11-16T09:46:42Z-
dc.date.available2020-11-16T09:46:42Z-
dc.date.issued2019-04-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1163-
dc.description.abstractThe localized method of fundamental solutions (LMFS) is proposed in this paper for solving two-dimensional boundary value problems, governed by Laplace and biharmonic equations, in complicated domains. Traditionally, the method of fundamental solutions (MFS) is a global method and the resultant matrix is dense and ill-conditioned. In this paper, it is the first time that the LMFS, the localized version of the MFS, is proposed. In the LMFS, the solutions at every interior node are expressed as linear combinations of solutions at some nearby nodes, while the numerical procedures of MFS are implemented within every local subdomain. The satisfactions of governing equation at interior nodes and boundary conditions at boundary nodes can yield a sparse system of linear algebraic equations, so the numerical solutions can be efficiently acquired by solving the resultant sparse system. Six numerical examples are given to demonstrate the effectiveness of the proposed LMFS.en_US
dc.language.isoenen_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectLocalized method of fundamental solutionsen_US
dc.subjectLaplace equationen_US
dc.subjectBiharmonic equationen_US
dc.subjectBiharmonic equationen_US
dc.subjectComplicated domainen_US
dc.titleLocalized method of fundamental solutions for solving two-dimensional Laplace and biharmonic equationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2018.11.008-
dc.identifier.isiWOS:000463126700018-
dc.relation.journalvolume101en_US
dc.relation.pages188-197en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDoctorate Degree Program in Ocean Engineering and Technology-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgCollege of Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

61
上周
0
上個月
20
checked on 2023/2/16

Page view(s)

316
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋