Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1166
DC 欄位值語言
dc.contributor.authorChia-Ming Fanen_US
dc.contributor.authorHong-Huei Lien_US
dc.date.accessioned2020-11-16T09:46:42Z-
dc.date.available2020-11-16T09:46:42Z-
dc.date.issued2013-02-
dc.identifier.issn0096-3003-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1166-
dc.description.abstractIn this paper, a boundary-type meshfree algorithm is proposed to accurately and stably deal with the two-dimensional inverse Stokes problems, which are highly ill-conditioned. Based on the Laplacian decomposition, the Stokes equations are recast as three Laplace equations. Then the modified collocation Trefftz method (MCTM), one of the most promising boundary-type meshless methods, is adopted to solve these three Laplace equations. The MCTM can stabilize the numerical scheme and obtain highly accurate results by utilizing the characteristic length. Accordingly, the numerical solutions of these three Laplace equations are expressed by linear combination of the modified T-complete functions. The unknown coefficients in the solution expressions are found by enforcing the satisfactions of the boundary conditions at the boundary collocation points. Three numerical examples are provided to show the efficacy and stability of the proposed meshless method. Besides, noises are added into the boundary conditions to demonstrate the stability of the proposed scheme for dealing with the inverse Stokes problems.en_US
dc.language.isoenen_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.subjectInverse Stokes problemsen_US
dc.subjectLaplacian decompositionen_US
dc.subjectModified collocation Trefftz methoden_US
dc.subjectBoundary-type meshless methodsen_US
dc.subjectCharacteristic lengthen_US
dc.subjectIll-conditioneden_US
dc.titleSolving the inverse Stokes problems by the modified collocation Trefftz method and Laplacian decompositionen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.amc.2012.12.081-
dc.identifier.isiWOS:000315708700015-
dc.relation.journalvolume219en_US
dc.relation.journalissue12en_US
dc.relation.pages6520-6535en_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypejournal article-
item.grantfulltextnone-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

11
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

114
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋