Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1168
DC 欄位值語言
dc.contributor.authorFan, CMen_US
dc.contributor.authorLi, HHen_US
dc.contributor.authorKuo, CLen_US
dc.date.accessioned2020-11-16T09:46:43Z-
dc.date.available2020-11-16T09:46:43Z-
dc.date.issued2011-10-
dc.identifier.issn1023-2796-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1168-
dc.description.abstractIn this paper, the two-dimensional Stokes problem is analyzed by the modified collocation Trefftz method (MCTM) and the Laplacian decomposition. The coupled Stokes equations are converted to three Laplace equations by utilizing the Laplacian decomposition and then the boundary-type meshless MCTM is adopted to solve the resultant Laplace equations. The MCTM, free from mesh and numerical quadrature, is derived from the conventional Trefftz method by considering the characteristic length of the domain, which stabilize the numerical scheme and obtain highly accurate results. Besides, the solutions are expressed as the linear combination of T-complete functions and the velocity as well as pressure are coupled by collocating the boundary conditions. Several numerical examples are provided to demonstrate the efficacy and accuracy of the proposed meshless scheme. In addition, the numerical results demonstrates that the proposed meshless scheme can solve the Stokes problems accurately in simply- and doubly-connected domains.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Marine Science and Technology-Taiwanen_US
dc.subjectmodified collocation Trefftz methoden_US
dc.subjectLaplacian decompositionen_US
dc.subjectStokes problemen_US
dc.subjectboundary-type meshless methoden_US
dc.subjectT-complete functionsen_US
dc.titleTHE MODIFIED COLLOCATION TREFFTZ METHOD AND LAPLACIAN DECOMPOSITION FOR SOLVING TWO-DIMENSIONAL STOKES PROBLEMSen_US
dc.typejournal articleen_US
dc.identifier.isiWOS:000296687400008-
dc.relation.journalvolume19en_US
dc.relation.journalissue5en_US
dc.relation.pages522-530en_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypejournal article-
item.grantfulltextnone-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptOcean Energy and Engineering Technology-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

Page view(s)

120
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋