Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1169
DC FieldValueLanguage
dc.contributor.authorChia-Ming Fanen_US
dc.contributor.authorPo-Wei Lien_US
dc.date.accessioned2020-11-16T09:46:43Z-
dc.date.available2020-11-16T09:46:43Z-
dc.date.issued2015-09-
dc.identifier.issn1040-7790-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1169-
dc.description.abstractIn this study, both of direct and inverse Stokes problems are stably and accurately analyzed by the method of fundamental solutions (MFS) and the Laplacian decomposition. In order to accurately resolve the Stokes problem, the Laplacian decomposition is adopted to convert the Stokes equations into three Laplace equations, which will be solved by the MFS, with an augmented boundary condition. To enforce the satisfactions of continuity equation along whole boundary as an augmented boundary condition will guarantee the satisfactions of mass conservation inside the computational domain. The MFS is one of the most promising boundary-type meshless methods, since the time-consuming tasks of mesh generation and numerical quadrature can be avoided as well as only boundary nodes are needed for numerical implementations. The numerical solutions of the MFS are expressed as linear combinations of fundamental solutions of Laplace equation and the sources are located out of the computational domain to avoid numerical singularity. The numerical solutions for velocity components, pressure and their gradient terms can be obtained by simple summation due to the simplicity of the MFS. Several numerical examples of direct and inverse Stokes problems are analyzed by the proposed boundary-type meshless numerical scheme. The simplicity and the accuracy of the proposed method are verified by numerical experiments and comparisons. Moreover, different levels of noise are added into boundary conditions of inverse Stokes problems to validate the stability of the proposed numerical scheme.en_US
dc.language.isoenen_US
dc.relation.ispartofNumerical Heat Transfer Part B-Fundamentalsen_US
dc.titleNUMERICAL SOLUTIONS OF DIRECT AND INVERSE STOKES PROBLEMS BY THE METHOD OF FUNDAMENTAL SOLUTIONS AND THE LAPLACIAN DECOMPOSITIONen_US
dc.typejournal articleen_US
dc.identifier.doi10.1080/10407790.2015.1021579-
dc.identifier.isiWOS:000356702400002-
dc.relation.journalvolume68en_US
dc.relation.journalissue3en_US
dc.relation.pages204-223en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

10
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

262
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback