Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1169
DC 欄位值語言
dc.contributor.authorChia-Ming Fanen_US
dc.contributor.authorPo-Wei Lien_US
dc.date.accessioned2020-11-16T09:46:43Z-
dc.date.available2020-11-16T09:46:43Z-
dc.date.issued2015-09-
dc.identifier.issn1040-7790-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1169-
dc.description.abstractIn this study, both of direct and inverse Stokes problems are stably and accurately analyzed by the method of fundamental solutions (MFS) and the Laplacian decomposition. In order to accurately resolve the Stokes problem, the Laplacian decomposition is adopted to convert the Stokes equations into three Laplace equations, which will be solved by the MFS, with an augmented boundary condition. To enforce the satisfactions of continuity equation along whole boundary as an augmented boundary condition will guarantee the satisfactions of mass conservation inside the computational domain. The MFS is one of the most promising boundary-type meshless methods, since the time-consuming tasks of mesh generation and numerical quadrature can be avoided as well as only boundary nodes are needed for numerical implementations. The numerical solutions of the MFS are expressed as linear combinations of fundamental solutions of Laplace equation and the sources are located out of the computational domain to avoid numerical singularity. The numerical solutions for velocity components, pressure and their gradient terms can be obtained by simple summation due to the simplicity of the MFS. Several numerical examples of direct and inverse Stokes problems are analyzed by the proposed boundary-type meshless numerical scheme. The simplicity and the accuracy of the proposed method are verified by numerical experiments and comparisons. Moreover, different levels of noise are added into boundary conditions of inverse Stokes problems to validate the stability of the proposed numerical scheme.en_US
dc.language.isoenen_US
dc.relation.ispartofNumerical Heat Transfer Part B-Fundamentalsen_US
dc.titleNUMERICAL SOLUTIONS OF DIRECT AND INVERSE STOKES PROBLEMS BY THE METHOD OF FUNDAMENTAL SOLUTIONS AND THE LAPLACIAN DECOMPOSITIONen_US
dc.typejournal articleen_US
dc.identifier.doi10.1080/10407790.2015.1021579-
dc.identifier.isiWOS:000356702400002-
dc.relation.journalvolume68en_US
dc.relation.journalissue3en_US
dc.relation.pages204-223en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

10
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

262
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋