Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1183
DC FieldValueLanguage
dc.contributor.authorGu, MHen_US
dc.contributor.authorYoung, DLen_US
dc.contributor.authorFan, CMen_US
dc.date.accessioned2020-11-16T09:46:45Z-
dc.date.available2020-11-16T09:46:45Z-
dc.date.issued2009-06-
dc.identifier.issn1546-2218-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1183-
dc.description.abstractA meshless numerical algorithm is developed for the Solutions of one-dimensional wave equations in this paper. The proposed numerical scheme is constructed by the Eulerian-Lagrangian method of fundamental Solutions (ELMFS) together with the D'Alembert formulation. The D'Alembert formulation is used to avoid the difficulty to constitute the linear algebraic system by using the ELMFS in dealing with the initial conditions and time-evolution. Moreover the ELMFS based on (Eulerian-Langrangian method (ELM) and the method of fundamental solutions (MFS) is a truly meshless and quadrature-free numerical method. In this proposed wave model, the one-dimensional wave equation is reduced to an implicit form of two advection equations by the D'Alembert formulation. Solutions of advection equations are then approximated by the ELMFS with exceptionally small diffusion effects. We will consider five numerical examples to test the capability of the wave model in finite and infinite domains. Namely, the traveling wave propagation. the time-space Cauchy problems and the problems of vibrating string, etc. Numerical validations of the robustness and the accuracy of the proposed method have demonstrated that the proposed meshless numerical model is a highly accurate and efficient scheme for solving one-dimensional wave equations.en_US
dc.language.isoenen_US
dc.relation.ispartofCmc-Computers Materials & Continuaen_US
dc.subjectEulerian-Lagrangian method of fundamental solutionsen_US
dc.subjectD'Alembert formulationen_US
dc.subjectone-dimensional wave equationsen_US
dc.subjectmeshless numerical methoden_US
dc.titleThe Method of Fundamental Solutions for One-Dimensional Wave Equationsen_US
dc.typejournal articleen_US
dc.identifier.isiWOS:000272669100002-
dc.relation.journalvolume11en_US
dc.relation.journalissue3en_US
dc.relation.pages185-208en_US
item.grantfulltextnone-
item.fulltextno fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypejournal article-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

134
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback