Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1184
Title: Localized method of fundamental solutions for large-scale modelling of three-dimensional anisotropic heat conduction problems - Theory and MATLAB code
Authors: Yan Gu
Chia-Ming Fan 
WenZhen Qu
Fajie Wang
Keywords: Localized method of fundamental solutions;Meshless method;Large-scale problem;Three-dimensional anisotropic heat conduction problem;Complicated domain
Issue Date: Aug-2019
Journal Volume: 220
Start page/Pages: 144-155
Source: Computers & Structures
Abstract: 
The method of fundamental solutions (MFS) belongs to the family of meshless boundary collocation methods and now has been successfully tried for many kinds of engineering problems. The traditional MFS based on the “global” boundary discretization, however, leads to dense and non-symmetric coefficient matrices that, although smaller in sizes, require huge computational cost to compute the system of equations using direct solvers. Such an approach will be arduous, time consuming and computationally expensive for analyzing large-scale problems. In the present work, a localized version of the MFS, named as the localized MFS (LMFS), is proposed for large-scale modelling of three-dimensional (3D) anisotropic heat conduction problems. In the LMFS, the computational domain can be divided into small subdomains with a simple geometry such as circle and/or sphere. To each of the subdomains, the MFS formulation is applied and the unknown coefficients on the local simple geometric boundary are approximated by the moving least square (MLS) method. The satisfactions of governing equations at interior points and boundary conditions at boundary nodes lead to a sparse and banded system matrix. Numerical examples with up to 1,000,000 unknowns are solved successfully using the developed LMFS code. The advantages, disadvantages and potential applications of the proposed method, as compared with the traditional MFS and boundary element method (BEM), are discussed. Finally, a fast, reliable and self-contained MATLAB code is provided in the part of Supplementary Materials of the paper.
URI: http://scholars.ntou.edu.tw/handle/123456789/1184
ISSN: 0045-7949
DOI: 10.1016/j.compstruc.2019.04.010
WOS:000472704900011
Appears in Collections:河海工程學系

Show full item record

WEB OF SCIENCETM
Citations

8
checked on Dec 29, 2020

Page view(s)

203
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback