Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1185
DC FieldValueLanguage
dc.contributor.authorYan Guen_US
dc.contributor.authorChia-Ming Fanen_US
dc.contributor.authorWenzhen Quen_US
dc.contributor.authorFajie Wangen_US
dc.contributor.authorChuanzeng Zhangen_US
dc.date.accessioned2020-11-16T09:46:45Z-
dc.date.available2020-11-16T09:46:45Z-
dc.date.issued2019-12-
dc.identifier.issn0178-7675-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1185-
dc.description.abstractIn this paper we investigate the application of the localized method of fundamental solutions (LMFS) for solving three-dimensional inhomogeneous elliptic boundary value problems. A direct Chebyshev collocation scheme (CCS) is employed for the approximation of the particular solutions of the given inhomogeneous problem. The Gauss–Lobatto collocation points are used in the CCS to ensure the pseudo-spectral convergence of the method. The resulting homogeneous equations are then calculated by using the LMFS. In the framework of the LMFS, the computational domain is divided into a set of overlapping local subdomains where the traditional MFS formulation and the moving least square method are applied. The proposed CCS-LMFS produces sparse and banded stiffness matrix which makes the method possible to perform large-scale simulations on a desktop computer. Numerical examples involving Poisson, Helmholtz as well as modified-Helmholtz equations (with up to 1,000,000 unknowns) are presented to illustrate the efficiency and accuracy of the proposed method.en_US
dc.language.isoenen_US
dc.relation.ispartofComputational Mechanicsen_US
dc.subjectParticular solutionsen_US
dc.subjectMethod of fundamental solutionsen_US
dc.subjectMeshless methoden_US
dc.subjectChebyshev polynomialsen_US
dc.subjectInhomogeneous elliptic problemsen_US
dc.titleLocalized method of fundamental solutions for three-dimensional inhomogeneous elliptic problems: theory and MATLAB codeen_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s00466-019-01735-x-
dc.identifier.isiWOS:000496591500006-
dc.relation.journalvolume64en_US
dc.relation.journalissue6en_US
dc.relation.pages1567–1588en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

28
Last Week
0
Last month
0
checked on May 7, 2023

Page view(s)

159
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback