Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1204
DC FieldValueLanguage
dc.contributor.authorBin Leien_US
dc.contributor.authorC.M. Fanen_US
dc.contributor.authorMing Lien_US
dc.date.accessioned2020-11-16T09:46:47Z-
dc.date.available2020-11-16T09:46:47Z-
dc.date.issued2018-05-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1204-
dc.description.abstractIn this paper, we utilized the method of fundamental solutions, which is meshless and integral-free, to analyze the non-linear Berger equation for thin elastic plate. Based on the proposed numerical scheme, the deflection can be expressed as the linear combination of the homogeneous solution and the particular solutions. The particular solution, based on the polyharmonic splines, is derived and then the spatial-dependent loading term of the Berger equation can be approximated by the polyharmonic splines. After the particular solution is obtained, the homogeneous solution, which is governed by the homogeneous partial differential equations, can be solved by the method of fundamental solutions. Several numerical examples are adopted to demonstrate the flexibility and robustness of the proposed meshless scheme, especially the irregular plate with spatial-dependent loading function. Furthermore, we also performed the convergence test for various orders of the polyharmonic splines.en_US
dc.language.isoenen_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectmeshless methoden_US
dc.subjectmethod of fundamental solutionsen_US
dc.subjectBerger equationen_US
dc.subjectthin elastic plateen_US
dc.subjectpolyharmonic splinesen_US
dc.titleThe method of fundamental solutions for solving non-linear Berger equation of thin elastic plateen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2018.02.007-
dc.identifier.isiWOS:000429511900009-
dc.relation.journalvolume90en_US
dc.relation.pages100-106en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

149
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback