Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1218
DC FieldValueLanguage
dc.contributor.authorWenzhen Quen_US
dc.contributor.authorChia-Ming Fanen_US
dc.contributor.authorXiaolin Lien_US
dc.date.accessioned2020-11-16T09:46:49Z-
dc.date.available2020-11-16T09:46:49Z-
dc.date.issued2020-07-
dc.identifier.issn0898-1221-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1218-
dc.description.abstractThe localized method of fundamental solutions (LMFS) is an efficient meshless collocation method that combines the concept of localization and the method of fundamental solutions (MFS). The resultant system of linear algebraic equations in the LMFS is sparse and banded and thus, drastically reduces the storage and computational burden of the MFS. In the LMFS, the moving least square (MLS) approximation, based on fundamental solutions, is used to construct approximate solution at each node. In this paper, this fundamental solutions-based MLS approximation, named as an augmented MLS (AMLS) approximation, is generalized to any point in the computational domain. Computational formulas, theoretical properties and error estimates of the AMLS approximation are derived. Then, taking Laplace equation as an example, this paper sets up a framework for the theoretical error analysis of the LMFS. Finally, numerical results are presented to verify the efficiency and theoretical results of the AMLS approximation and the LMFS. Convergence and comparison researches are conducted to validate the accuracy, convergence and efficiency.en_US
dc.language.isoenen_US
dc.relation.ispartofComputers & Mathematics with Applicationsen_US
dc.subjectMeshless methoden_US
dc.subjectLocalized method of fundamental solutionen_US
dc.subjectAugmented moving least squares approximationen_US
dc.subjectLaplace equationen_US
dc.subjectFundamental solutionen_US
dc.subjectError estimatesen_US
dc.titleAnalysis of an augmented moving least squares approximation and the associated localized method of fundamental solutionsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.camwa.2020.02.015-
dc.identifier.isiWOS:000532663500002-
dc.relation.journalvolume80en_US
dc.relation.journalissue1en_US
dc.relation.pages13-30en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

52
Last Week
0
Last month
0
checked on May 7, 2023

Page view(s)

222
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback