Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1220
DC FieldValueLanguage
dc.contributor.authorWenzhen Quen_US
dc.contributor.authorYan Guen_US
dc.contributor.authorYaoming Zhangen_US
dc.contributor.authorChia-Ming Fanen_US
dc.contributor.authorChuanzeng Zhangen_US
dc.date.accessioned2020-11-16T09:46:49Z-
dc.date.available2020-11-16T09:46:49Z-
dc.date.issued2019-01-
dc.identifier.issn0029-5981-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1220-
dc.description.abstractThis paper presents a numerical framework for the highly accurate solutions of transient heat conduction problems. The numerical framework discretizes the temporal direction of the problems by introducing the Krylov deferred correction (KDC) approach, which is arbitrarily high order of accuracy while remaining the computational complexity same as in the time-marching of first-order methods. The discretization by employing the KDC method yields a boundary value problem of the inhomogeneous modified Helmholtz equation at each time step. The meshless generalized finite difference method (GFDM) or meshless finite difference method (MFDM), a meshless method, is then applied to the solution of resulting boundary value problems at each time step. Six numerical experiments in one-, two-, and three-dimensional cases show that the proposed hybrid KDC-GFDM scheme allows big time step size for a long-time dynamic simulation and has a great potential for the problems with complex boundaries. In addition, some comparisons are also presented between the present method, the COMSOL software, and the GFDM with implicit Euler method.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal for Numerical Methods in Engineeringen_US
dc.titleA combined scheme of generalized finite difference method and Krylov deferred correction technique for highly accurate solution of transient heat conduction problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1002/nme.5948-
dc.identifier.isiWOS:000451884100004-
dc.relation.journalvolume117en_US
dc.relation.journalissue1en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

21
Last Week
0
Last month
1
checked on Jun 27, 2023

Page view(s)

206
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback