Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1221
DC 欄位值語言
dc.contributor.authorLina Songen_US
dc.contributor.authorPo-Wei Lien_US
dc.contributor.authorYan Guen_US
dc.contributor.authorChia-Ming Fanen_US
dc.date.accessioned2020-11-16T09:46:49Z-
dc.date.available2020-11-16T09:46:49Z-
dc.date.issued2020-09-
dc.identifier.issn0898-1221-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1221-
dc.description.abstractIn the present work, a generalized finite difference method (GFDM), a meshless method based on Taylor-series approximations, is proposed to solve stationary 2D and 3D Stokes equations. To overcome the troublesome pressure oscillation in the Stokes problem, a new simple formulation of boundary condition for the Stokes problem is proposed. This numerical approach only adds a mixed boundary condition, the projections of the momentum equation on the boundary outward normal vector, to the Stokes equations, without any other change to the governing equations. The proposed formulation can be easily discretized by the GFDM. The GFDM is evolved from the Taylor series expansions and moving-least squares approximation, and the derivative expressed of unknown variables as linear combinations of function values of neighboring nodes. Numerical examples are utilized to verify the feasibility of the proposed GFDM scheme not only for the Stokes problem, but also for more involved and general problems, such as the Poiseuille flow, the Couette flow and the Navier–Stokes equations in low-Reynolds-number regime. Moreover, numerical results and comparisons show that using the GFDM to solve the proposed formulation of the Stokes equations is more accurate than the classical formulation of the pressure Poisson equation.en_US
dc.language.isoenen_US
dc.relation.ispartofComputers & Mathematics with Applicationsen_US
dc.subjectMeshless methoden_US
dc.subjectGeneralized finite difference methoden_US
dc.subjectStokes equationsen_US
dc.titleGeneralized finite difference method for solving stationary 2D and 3D Stokes equations with a mixed boundary conditionen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.camwa.2020.08.004-
dc.identifier.isiWOS:000566883300015-
dc.relation.journalvolume80en_US
dc.relation.journalissue6en_US
dc.relation.pages1726-1743en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

24
上周
0
上個月
1
checked on 2023/6/27

Page view(s)

366
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋