Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1233
DC 欄位值語言
dc.contributor.authorFajie Wangen_US
dc.contributor.authorChia-Ming Fanen_US
dc.contributor.authorQingsong Huaen_US
dc.contributor.authorYan Guen_US
dc.date.accessioned2020-11-16T09:46:51Z-
dc.date.available2020-11-16T09:46:51Z-
dc.date.issued2020-01-
dc.identifier.issn0096-3003-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1233-
dc.description.abstractThis paper makes a first attempt to use a new localized method of fundamental solutions (LMFS) to accurately and stably solve the inverse Cauchy problems of two-dimensional Laplace and biharmonic equations in complex geometries. The LMFS firstly divides the whole physical domain into several small overlapping subdomains, and then employs the traditional method of fundamental solutions (MFS) formulation in every local subdomain for calculating the unknown coefficients on the local fictitious boundary. After that, a sparse linear system is formed by using the governing equation for interior nodes and the nodes on under-specified boundary, and by using the given boundary conditions for the nodes on over-specified boundary. Finally, the numerical solutions of the inverse problems can be obtained by solving the resultant sparse system. Compared with the traditional MFS with the “global” boundary discretization, the LMFS requires less computational cost, which may make the LMFS suitable for solving large-scale problems. Numerical experiments demonstrate the validity and accuracy of the proposed LMFS for the inverse Cauchy problems of two-dimensional Laplace and biharmonic equations with noisy boundary data.en_US
dc.language.isoenen_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.subjectInverse Cauchy problemen_US
dc.subjectLocalized method of fundamental solutionsen_US
dc.subjectMeshless methoden_US
dc.subjectLaplace equationen_US
dc.subjectBiharmonic equationen_US
dc.titleLocalized MFS for the inverse Cauchy problems of two-dimensional Laplace and biharmonic equationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.amc.2019.124658-
dc.identifier.isiWOS:000486392700007-
dc.relation.journalvolume364en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

66
checked on 2023/3/31

Page view(s)

306
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋