Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1233
DC FieldValueLanguage
dc.contributor.authorFajie Wangen_US
dc.contributor.authorChia-Ming Fanen_US
dc.contributor.authorQingsong Huaen_US
dc.contributor.authorYan Guen_US
dc.date.accessioned2020-11-16T09:46:51Z-
dc.date.available2020-11-16T09:46:51Z-
dc.date.issued2020-01-
dc.identifier.issn0096-3003-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1233-
dc.description.abstractThis paper makes a first attempt to use a new localized method of fundamental solutions (LMFS) to accurately and stably solve the inverse Cauchy problems of two-dimensional Laplace and biharmonic equations in complex geometries. The LMFS firstly divides the whole physical domain into several small overlapping subdomains, and then employs the traditional method of fundamental solutions (MFS) formulation in every local subdomain for calculating the unknown coefficients on the local fictitious boundary. After that, a sparse linear system is formed by using the governing equation for interior nodes and the nodes on under-specified boundary, and by using the given boundary conditions for the nodes on over-specified boundary. Finally, the numerical solutions of the inverse problems can be obtained by solving the resultant sparse system. Compared with the traditional MFS with the “global” boundary discretization, the LMFS requires less computational cost, which may make the LMFS suitable for solving large-scale problems. Numerical experiments demonstrate the validity and accuracy of the proposed LMFS for the inverse Cauchy problems of two-dimensional Laplace and biharmonic equations with noisy boundary data.en_US
dc.language.isoenen_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.subjectInverse Cauchy problemen_US
dc.subjectLocalized method of fundamental solutionsen_US
dc.subjectMeshless methoden_US
dc.subjectLaplace equationen_US
dc.subjectBiharmonic equationen_US
dc.titleLocalized MFS for the inverse Cauchy problems of two-dimensional Laplace and biharmonic equationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.amc.2019.124658-
dc.identifier.isiWOS:000486392700007-
dc.relation.journalvolume364en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

66
checked on Mar 31, 2023

Page view(s)

306
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback