Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1234
DC FieldValueLanguage
dc.contributor.authorFajie Wangen_US
dc.contributor.authorChia-Ming Fanen_US
dc.contributor.authorChuanzeng Zhangen_US
dc.contributor.authorJi Linen_US
dc.date.accessioned2020-11-16T09:46:51Z-
dc.date.available2020-11-16T09:46:51Z-
dc.date.issued2020-08-
dc.identifier.issn2070-0733-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1234-
dc.description.abstractIn this paper, a localized space-time method of fundamental solutions (LSTMFS) is proposed to solve the diffusion and convection-diffusion problems. The proposed LSTMFS only requires some arbitrarily-distributed nodes inside the space-time domain and along its boundary. The local subdomain corresponding to each node can firstly be determined based on the Euclidean distance between the nodes. Then, the variable at each node can be expressed as a linear combination of variables at its supporting nodes. By solving a resultant sparse system, the variable at any node in the considered space-time domain can be obtained. Compared with the traditional space-time method of fundamental solutions, the proposed LSTMFS is more suitable for solving large-scale and long-time diffusion problems. Furthermore, the LSTMFS without temporal-difference is simple, accurate and easy-to-implement due to its semi-analytical and meshless features. Numerical experiments, including diffusion and convection-diffusion problems, confirm the validity and accuracy of the proposed LSTMFS.en_US
dc.language.isoenen_US
dc.relation.ispartofAdvances in Applied Mathematics and Mechanicsen_US
dc.subjectLocalized space-time method of fundamental solutionsen_US
dc.subjectmeshless methoden_US
dc.subjecttime-dependent fundamental solutionsen_US
dc.subjectdiffusionen_US
dc.subjectconvection-diffusion.en_US
dc.titleA Localized Space-Time Method of Fundamental Solutions for Diffusion and Convection-Diffusion Problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.4208/aamm.OA-2019-0269-
dc.identifier.isiWOS:000538166100004-
dc.relation.journalvolume12en_US
dc.relation.journalissue4en_US
dc.relation.pages940-958.en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

54
Last Week
0
Last month
2
checked on Jun 27, 2023

Page view(s)

456
Last Week
1
Last month
5
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback