Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1235
DC FieldValueLanguage
dc.contributor.authorWang, Y. Y.en_US
dc.contributor.authorGu, Y.en_US
dc.contributor.authorChia-Ming Fanen_US
dc.contributor.authorChen, W.en_US
dc.contributor.authorZhang, C. Z.en_US
dc.date.accessioned2020-11-16T09:46:51Z-
dc.date.available2020-11-16T09:46:51Z-
dc.date.issued2018-09-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1235-
dc.description.abstractThe generalized finite difference method (GFDM) is a relatively new meshless method for the numerical solution of certain boundary value problems. The method uses the Taylor series expansions and the moving least squares approximation to derive explicit formulae for the required partial derivatives of unknown variables. In this paper, we document the first attempt to apply the GFDM for the numerical solution of two-dimensional (2D) multi-layered elastic problems. A multi-domain GFDM scheme is proposed to model the composite (layered) elastic materials. The composite material considered is decomposed into several sub-domains and, in each sub-domain, the solution is approximated by using the GFDM-type expansion. On the subdomain interface, compatibility of displacements and equilibrium of tractions are imposed. Preliminary numerical experiments show that the introduced multi-domain GFDM is very promising for accurate and efficient numerical simulations of multi-layered materials.en_US
dc.language.isoenen_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectMulti-layered materialsen_US
dc.subjectMeshless methoden_US
dc.subjectGeneralized finite difference methoden_US
dc.subjectDomain decomposition techniqueen_US
dc.subjectElasticityen_US
dc.titleDomain-decomposition generalized finite difference method for stress analysis in multi-layered elastic materialsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2018.06.006-
dc.identifier.doiWOS:000441487300009-
dc.relation.journalvolume94en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

2
checked on Dec 29, 2020

Page view(s)

152
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback