Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1254
DC FieldValueLanguage
dc.contributor.authorD.L. Youngen_US
dc.contributor.authorC.M. Fanen_US
dc.contributor.authorS.P. Huen_US
dc.contributor.authorS.N. Atlurien_US
dc.date.accessioned2020-11-16T09:46:53Z-
dc.date.available2020-11-16T09:46:53Z-
dc.date.issued2008-05-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1254-
dc.description.abstractThe Eulerian–Lagrangian method of fundamental solutions is proposed to solve the two-dimensional unsteady Burgers’ equations. Through the Eulerian–Lagrangian technique, the quasi-linear Burgers’ equations can be converted to the characteristic diffusion equations. The method of fundamental solutions is then adopted to solve the diffusion equation through the diffusion fundamental solution; in the meantime the convective term in the Burgers’ equations is retrieved by the back-tracking scheme along the characteristics. The proposed numerical scheme is free from mesh generation and numerical integration and is a truly meshless method. Two-dimensional Burgers’ equations of one and two unknown variables with and without considering the disturbance of noisy data are analyzed. The numerical results are compared very well with the analytical solutions as well as the results by other numerical schemes. By observing these comparisons, the proposed meshless numerical scheme is convinced to be an accurate, stable and simple method for the solutions of the Burgers’ equations with irregular domain even using very coarse collocating points.en_US
dc.language.isoenen_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectEulerian–Lagrangian methoden_US
dc.subjectMethod of fundamental solutionsen_US
dc.subjectBurgers’ equationsen_US
dc.subjectDiffusion fundamental solutionen_US
dc.subjectMeshless methoden_US
dc.titleThe Eulerian-Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers' equationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2007.08.011-
dc.identifier.isiWOS:000256536000004-
dc.relation.journalvolume32en_US
dc.relation.journalissue5en_US
dc.relation.pages395-412en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

58
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

293
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback