Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1259
DC FieldValueLanguage
dc.contributor.authorD.L. Youngen_US
dc.contributor.authorY.C. Linen_US
dc.contributor.authorC.M. Fanen_US
dc.contributor.authorC.L. Chiuen_US
dc.date.accessioned2020-11-16T09:46:54Z-
dc.date.available2020-11-16T09:46:54Z-
dc.date.issued2009-08-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1259-
dc.description.abstractA novel meshless numerical procedure based on the method of fundamental solutions (MFS) is proposed to solve the primitive variables formulation of the Navier–Stokes equations. The MFS is a meshless method since it is free from the mesh generation and numerical integration. We will transform the Navier–Stokes equations into simple advection–diffusion and Poisson differential operators via the operator-splitting scheme or the so-called projection method, instead of directly using the more complicated fundamental solutions (Stokeslets) of the unsteady Stokes equations. The resultant velocity advection–diffusion equations and the pressure Poisson equation are then calculated by using the MFS together with the Eulerian–Lagrangian method (ELM) and the method of particular solutions (MPS). The proposed meshless numerical scheme is a first attempt to apply the MFS for solving the Navier–Stokes equations in the moderate-Reynolds-number flow regimes. The lid-driven cavity flows at the Reynolds numbers up to 3200 for two-dimensional (2D) and 1000 for three-dimensional (3D) are chosen to validate the present algorithm. Through further simulating the flows in the 2D circular cavity with an eccentric rotating cylinder and in the 3D cube with a fixed sphere inside, we are able to demonstrate the advantages and flexibility of the proposed meshless method in the irregular geometry and multi-dimensional flows, even though very coarse node points are used in this study as compared with other mesh-dependent numerical schemes.en_US
dc.language.isoenen_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectNavier–Stokes equationsen_US
dc.subjectMeshless numerical methoden_US
dc.subjectMethod of fundamental solutionsen_US
dc.subjectMethod of particular solutionsen_US
dc.subjectEulerian–Lagrangian methoden_US
dc.subjectOperator-splitting methoden_US
dc.titleThe method of fundamental solutions for solving incompressible Navier-Stokes problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2009.03.003-
dc.identifier.isiWOS:000267515100005-
dc.relation.journalvolume33en_US
dc.relation.journalissue8-9en_US
dc.relation.pages1031-104en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

35
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

161
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback