Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1259
Title: The method of fundamental solutions for solving incompressible Navier-Stokes problems
Authors: D.L. Young
Y.C. Lin
C.M. Fan 
C.L. Chiu
Keywords: Navier–Stokes equations;Meshless numerical method;Method of fundamental solutions;Method of particular solutions;Eulerian–Lagrangian method;Operator-splitting method
Issue Date: Aug-2009
Journal Volume: 33
Journal Issue: 8-9
Start page/Pages: 1031-104
Source: Engineering Analysis with Boundary Elements
Abstract: 
A novel meshless numerical procedure based on the method of fundamental solutions (MFS) is proposed to solve the primitive variables formulation of the Navier–Stokes equations. The MFS is a meshless method since it is free from the mesh generation and numerical integration. We will transform the Navier–Stokes equations into simple advection–diffusion and Poisson differential operators via the operator-splitting scheme or the so-called projection method, instead of directly using the more complicated fundamental solutions (Stokeslets) of the unsteady Stokes equations. The resultant velocity advection–diffusion equations and the pressure Poisson equation are then calculated by using the MFS together with the Eulerian–Lagrangian method (ELM) and the method of particular solutions (MPS). The proposed meshless numerical scheme is a first attempt to apply the MFS for solving the Navier–Stokes equations in the moderate-Reynolds-number flow regimes. The lid-driven cavity flows at the Reynolds numbers up to 3200 for two-dimensional (2D) and 1000 for three-dimensional (3D) are chosen to validate the present algorithm. Through further simulating the flows in the 2D circular cavity with an eccentric rotating cylinder and in the 3D cube with a fixed sphere inside, we are able to demonstrate the advantages and flexibility of the proposed meshless method in the irregular geometry and multi-dimensional flows, even though very coarse node points are used in this study as compared with other mesh-dependent numerical schemes.
URI: http://scholars.ntou.edu.tw/handle/123456789/1259
ISSN: 0955-7997
DOI: 10.1016/j.enganabound.2009.03.003
Appears in Collections:河海工程學系

Show full item record

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback