Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1262
DC FieldValueLanguage
dc.contributor.authorD.L. Youngen_US
dc.contributor.authorC.C. Tsaien_US
dc.contributor.authorK. Murugesanen_US
dc.contributor.authorC.M. Fanen_US
dc.contributor.authorC.W. Chenen_US
dc.date.accessioned2020-11-16T09:46:54Z-
dc.date.available2020-11-16T09:46:54Z-
dc.date.issued2004-12-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1262-
dc.description.abstractThis paper describes the applications of the method of fundamental solutions (MFS) for 1-, 2- and 3-D diffusion equations. The time-dependent fundamental solutions for diffusion equations are used directly to obtain the solution as a linear combination of the fundamental solution of the diffusion operator. The proposed scheme is free from the conventionally used Laplace transform or the finite difference scheme to deal with the time derivative of the governing equation. By properly placing the field points and the source points at a given time level, the solution is advanced in time until steady state solutions are reached. Test results obtained for 1-, 2- and 3-D diffusion problems show good comparisons with the analytical solutions and some with the MFS based on the modified Helmholtz fundamental solutions, thus the demonstration present numerical scheme of MFS with the space–time unification has been demonstrated as a promising mesh-free numerical tool to solve homogeneous diffusion problem.en_US
dc.language.isoen_USen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectMethod of fundamental solutionsen_US
dc.subjectDiffusion equationen_US
dc.subjectDiffusion fundamental solutionen_US
dc.subjectMulti-dimensionsen_US
dc.titleTime-dependent fundamental solutions for homogeneous diffusion problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2004.07.003-
dc.identifier.isiWOS:000225307400006-
dc.relation.journalvolume28en_US
dc.relation.journalissue12en_US
dc.relation.pages1463-1473en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptBachelor Degree Program in Ocean Engineering and Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcidhttp://orcid.org/0000-0002-4464-5623-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
海洋工程科技學士學位學程(系)
Show simple item record

WEB OF SCIENCETM
Citations

97
Last Week
0
Last month
1
checked on Jun 27, 2023

Page view(s)

215
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback