Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 系統工程暨造船學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/13840
DC 欄位值語言
dc.contributor.author陳志立en_US
dc.contributor.author許添本en_US
dc.contributor.author張建仁en_US
dc.date.accessioned2020-11-30T05:50:35Z-
dc.date.available2020-11-30T05:50:35Z-
dc.date.issued2003-10-10-
dc.description.abstract大圈航法在實務上係為分段的恆向線航法,而各分段之轉向點位置的決定則有賴於航海人員所給定的初始條件。有鑒於目前大圈航法慣用的計算程序,或稱為參考頂點的計算程序,其本質係為一個間接計算方法。本文則使用向量代數直接建構大圈方程式,並以大圈方程式為基礎,根據不同條件推導出不同計算公式,準確且迅速求解大圈上任一點位置如各轉向點、頂點以及過赤道之點等。文中並舉出兩個實例做為新直接計算方法的說明。另由於相關論述對於大圈航法慣用的計算程序所使用的求解公式並非一致,據此,本文以誤差傳播性和簡單性等兩項評估準則,成功地建立一最佳化的計算程序。The great circle sailing is composed of segments of rhumb line sailing in theory and practice. The waypoints along the great circle track are determined under the given initial conditions by the navigators. Since the conventional computation procedure of the great circle sailing, or called the computation procedure with reference to the vertex, is essentially an indirect method. A direct approach, based on the great circle equation (GCE) by using the vector algebra, is thus proposed to deal with the problems of the great circle sailing. In this newly developed approach, any point along the great circle track, such as the waypoints, vertex and the point crossing the equator, can be obtained effectively by using the derived different equations for different given conditions. Two computed examples are included to illustrate the proposed approach. In addition, because equations used in the same step of the conventional computation procedure may be different for relevant literatures, two evaluation criteria, error propagation and simplicity, are taken into consideration for improvement of the conventional procedure and an optimal computation procedure is further proposed for suggestion.en_US
dc.publisher中華海運研究協會en_US
dc.relation.ispartofMaritime Research Joumalen_US
dc.subject球面三角en_US
dc.subject大圈方程式en_US
dc.subject大圈航法en_US
dc.subjectspherical triangleen_US
dc.subjectthe great circle equationen_US
dc.subjectthe great circle sailingen_US
dc.titleA Direct Computation Method to Great Circle Sailingen_US
dc.title.alternative大圈航法的直接計算方法en_US
dc.typejournal articleen_US
dc.identifier.doi10.7093/MRJ.200310.0061-
dc.identifier.urlhttp://192.83.186.15/cgi-bin/gs32/gsweb.cgi?o=dnclresource&s=id=%22A03043952%22.&searchmode=basic&tcihsspage=tcisearch_opt1_search-
dc.relation.journalvolume15en_US
dc.relation.pages61-76en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Merchant Marine-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Systems Engineering and Naval Architecture-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-4551-5409-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
顯示於:系統工程暨造船學系
顯示文件簡單紀錄

Page view(s)

20
上周
0
上個月
0
checked on 2022/10/13

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋