Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/14709
DC FieldValueLanguage
dc.contributor.author謝錦志en_US
dc.contributor.author許泰文en_US
dc.contributor.author張憲國en_US
dc.date.accessioned2020-12-17T07:37:46Z-
dc.date.available2020-12-17T07:37:46Z-
dc.date.issued1998-11-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/14709-
dc.description.abstract本文基於時序列為平穩型之前題,根據分式高斯噪音理論並配合計算機模擬,測 試一些不同統計性質的時序列資料,藉以探討滿足赫斯特定律之赫斯特現象所代表的意義。 本文另分析短記憶長度之時序列資料,探討轉線情況之統計特性。研究結果顯示轉線情況亦 表示時序列有持續性,故較完整赫斯特現象之意義應從兩方面加以說明,一為滿足赫斯特定 律者,其意義包含時序列具有長期持續性、特殊自相關函數結構及碎形特徵,三為呈現轉線 情況者,其意義僅表示時序列具持續性或屬短記憶長度性質。Based on the assumptions of a stationary time series and Fractional Gaussian Noises, tests of several generated time series of various statistical properties Were carried out to investigate the meaning of the Hurst phenomenon of satisfying Hurst law. Time series with short memory were also analyzed for exploring statistical characteristics of the cross-over situation. It is found that the crossover situation also represents time series with persistence. The present analysis shows that a full explanation of the Hurst phenomenon should be described by two different ways. One satisfies the Hurst law and represents time series with long-run persistence, special auto-correlation function, and Fractal characteristics. The other one exhibits the crossover situation and represents time series only with persistence or shorr memory.en_US
dc.language.isozhen_US
dc.publisher中國土木水利工程學會en_US
dc.relation.ispartof土木水利en_US
dc.subject赫斯特現象en_US
dc.subject分式高斯噪音en_US
dc.subject碎形en_US
dc.subjectR/S分析en_US
dc.subjectHurst phenomenonen_US
dc.subjectFractional Gaussian noisesen_US
dc.subjectFractalen_US
dc.subjectR/S analysisen_US
dc.title赫斯特現象意義之探討en_US
dc.title.alternativeA Study on the Meaning of the Hurst Phenomenonen_US
dc.typejournal articleen_US
dc.relation.journalvolume24en_US
dc.relation.journalissue3en_US
dc.relation.pagespp.7-18en_US
item.fulltextno fulltext-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1zh-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

42
Last Week
0
Last month
1
checked on Oct 13, 2022

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback