Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 系統工程暨造船學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/14842
標題: On the Modified Tikhonov’s Regularization Method for the Cauchy Problem of the Laplace Equation
作者: Jiang-Ren Chang 
Wei-Chung Yeih 
Min-Harng Shieh
關鍵字: Tikhonov's regularization method;singular value decomposition, L-curve;modified Tikhonov's regularization method;Cauchy problem
公開日期: 2001
卷: 9
期: 2
起(迄)頁: 113-121
來源出版物: Journal of Marine Science and Technology-Taiwan 
摘要: 
Abstract:In this paper, an inverse problem of the Laplace equation with
Cauchy data is examined. Due to the ill-posed behavior of this inverse
problem, the Tikhonov’s regularization technique is employed and
the L-curve concept is adopted to determine the optimal regularization
parameter. Also, the singular value decomposition method is
used in conjunction with the L-curve concept for the same problem.
Numerical results show that neither the traditional Tikhonov’s regularization
method nor the singular value decomposition method can
yield acceptable results when the influence matrix is highly ill-posed.
A modified regularization method, which combines the singular value
decomposition method and regularization method, is thus proposed,
and this new method shows that it is a better way to treat this kind of
inverse problems comparing with the other two traditional methods.
Numerical results also show that the inverse problem with Cauchy
data is better to formulate by the singular integral equation than by the
hypersingular integral equation for the constant element scheme. The
inverted boundary data becomes closer to the exact solution when the
number of elements increases, and numerical experiments show that
the rate of convergence is higher for the formulation using the singular
integral equation. Numerical experiments are made to examine how
the boundary Cauchy data affect the inverted process. It is concluded
that the inversion of unknown boundary data is more effective when
the Cauchy data are given more precisely and are distributed on the
whole boundary more diversely.
URI: http://scholars.ntou.edu.tw/handle/123456789/14842
顯示於:系統工程暨造船學系

顯示文件完整紀錄

Page view(s)

17
上周
0
上個月
0
checked on 2022/10/13

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋