Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 系統工程暨造船學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/15019
DC 欄位值語言
dc.contributor.authorChein-Shan Liuen_US
dc.contributor.authorJiang-Ren Changen_US
dc.contributor.authorYung-Wei Chenen_US
dc.date.accessioned2020-12-23T06:29:53Z-
dc.date.available2020-12-23T06:29:53Z-
dc.date.issued2015-02-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/15019-
dc.description.abstractThe steepest descent method (SDM), which can be traced back to Cauchy (1847), is the simplest gradient method for unconstrained optimization problem. The SDM is effective for well-posed and low-dimensional nonlinear optimization problems without constraints; however, for a large-dimensional system, it converges very slowly. Therefore, a modified steepest decent method (MSDM) is developed to deal with these problems. Under the MSDM framework, the original global minimization problem is transformed into a quadratic-form minimization based on the SDM and the current iterative point. Our starting point is a manifold defined in terms of the quadratic function and a fictitious time variable. Thereafter, we can derive an iterative algorithm by including a parameter in the final stage. Through a Hopf bifurcation, this parameter indeed plays a major role to switch the situation of slow convergence to a new situation that the new algorithm converges faster. Several numerical examples are examined and compared with exact solutions. It is found that the new algorithm of the MSDM has better computational efficiency and accuracy, even for a large-dimensional non-convex minimization problem of the generalized Rosenbrock function.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Marine Science and Technology-Taiwanen_US
dc.subjectinvariant manifolden_US
dc.subjectgeneralized Rosenbrock functionen_US
dc.subjectmodified steepest descent method (MSDM)en_US
dc.titleA Modified Algorithm of Steepest Descent Method for Solving Unconstraint Nonlinear Optimization Problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.6119/JMST-014-0221-1-
dc.relation.journalvolume23en_US
dc.relation.journalissue1en_US
dc.relation.pages88-97en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Systems Engineering and Naval Architecture-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Marine Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.orcid0000-0002-4551-5409-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
顯示於:系統工程暨造船學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

2
checked on 2023/3/21

Page view(s)

18
上周
0
上個月
0
checked on 2022/10/13

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋