Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1506
DC FieldValueLanguage
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorShyh-Rong Kuoen_US
dc.contributor.authorYu-Lung Changen_US
dc.contributor.authorShing-Kai Kaoen_US
dc.date.accessioned2020-11-16T11:11:26Z-
dc.date.available2020-11-16T11:11:26Z-
dc.date.issued2017-07-03-
dc.identifier.issn0264-4401-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1506-
dc.description.abstractPurpose The purpose of this paper is to detect the degenerate scale of a 2D bending plate analytically and numerically. Design/methodology/approach To avoid the time-consuming scheme, the influence matrix of the boundary element method (BEM) is reformulated to an eigenproblem of the 4 by 4 matrix by using the scaling transform instead of the direct-searching scheme to find degenerate scales. Analytical degenerate scales are derived from the boundary integral equation (BIE) by using the degenerate kernel only for the circular case. Numerical results of the direct-searching scheme and the eigen system for the arbitrary shape are also considered. Findings Results using three methods, namely, analytical derivation, the direct-searching scheme and the 4 by 4 eigen system, are also given for the circular case and arbitrary shapes. Finally, addition of a constant for the kernel function makes original eigenvalues (2 real roots and 2 complex roots) of the 4 by 4 matrix to be all real. This indicates that a degenerate scale depends on the kernel function. Originality/value The analytical derivation for the degenerate scale of a 2D bending plate in the BIE is first studied by using the degenerate kernel. Through the reformed eigenproblem of a 4 by 4 matrix, the numerical solution for the plate of an arbitrary shape can be used in the plate analysis using the BEM.en_US
dc.language.isoen_USen_US
dc.publisherEmerald Groupen_US
dc.relation.ispartofEngineering Computationsen_US
dc.subjectBoundary integral equationen_US
dc.subjectArbitrary shapesen_US
dc.subjectcircular plateen_US
dc.subjectDegenerate kernelen_US
dc.subjectDegenerate scalesen_US
dc.subjectEigenproblem of the 4 by 4 matrixen_US
dc.titleDegenerate-scale problem of the boundary integral equation method/boundary element method for the bending plate analysisen_US
dc.typejournal articleen_US
dc.identifier.doi10.1108/ec-06-2016-0187-
dc.relation.journalvolume34en_US
dc.relation.journalissue5en_US
dc.relation.pages1527-1550en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDoctorate Degree Program in Ocean Engineering and Technology-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

204
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback