Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 光電與材料科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/15800
Title: Effects of minor alloying addition on He bubble formation in the irradiated FeCoNiCr-based high-entropy alloys
Authors: Da Chen
Shijun Zhao
Jianrong Sun
Pengfei Tai
Yanbin Sheng
Guma Yeli
Yilu Zhao
Shaofei Liu
Weitong Lin
Wu Kai 
Ji-Jung Kai
Keywords: High-entropy alloy;Minor alloying;Helium bubble;Vacancy migration;Phase stability
Issue Date: Dec-2020
Publisher: Elsevier
Journal Volume: 542
Start page/Pages: 152458
Source: Journal of Nuclear Materials
Abstract: 
Minor alloying with specific elements is an effective approach to tailor material's properties, but it has not been introduced to modify the radiation effects of high-entropy alloys (HEAs), which are a promising material for nuclear application. In the work, a 0.2 molar ratio of Al/Cu/Ti was respectively added into the quaternary FeCoNiCr HEA, they were then irradiated by 2 MeV He ions at four temperatures from 673 to 973 K. After irradiation, He bubble behavior in specimens were investigated by the transmission electron microscopy (TEM). The results showed that bubbles in the minor alloying HEAs usually had a larger size, lower number density, and broader distribution range, comparing to their parent alloy. Such effects were more significant at a higher irradiation temperature and most pronounced by the Ti-addition. Atomistic simulations revealed that such minor alloying addition could relatively reduce the energy barrier for vacancy migration and formation in FeCoNiCr system, which thereby promotes He diffusion through the replacement or vacancy mechanism. The theoretical models for He bubble formations verified our results that a higher He diffusivity in the minor alloying HEAs can enhance bubble growth and lower its nucleation numbers during irradiation. The phase stability of irradiated HEAs were also examined and its potential influences on bubble evolution were pointed out. This study provides insights on tailoring radiation defects via the conventional alloying strategy.
URI: http://scholars.ntou.edu.tw/handle/123456789/15800
ISSN: 0022-3115
DOI: https://doi.org/10.1016/j.jnucmat.2020.152458
Appears in Collections:光電與材料科技學系

Show full item record

Page view(s)

136
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback