Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/16251
DC 欄位值語言
dc.contributor.authorPei-Yih Tingen_US
dc.contributor.authorCHIU-YU TSENGen_US
dc.contributor.authorLIN-SHAN LEEen_US
dc.date.accessioned2021-03-12T03:38:06Z-
dc.date.available2021-03-12T03:38:06Z-
dc.date.issued1990-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16251-
dc.description.abstractIn a long-term research project, the recognition of Mandarin speech for very large vocabulary and unlimited text is considered. Its first stage goal is to recognize the Mandarin syllables. In a previous paper, an initial/final two-phase recognition approach to recognize these very confusing syllables was proposed, in which each syllable is divided into initial and final parts and recognized separately, and efficient recognition techniques for the finals were proposed and discussed. This paper serves as a continuation and proposes an efficient system to recognize the Mandarin initials. In this system, a classification procedure is first used to categorize the unknown initials into two groups C1 and C2; different approaches are then separately applied and independently optimized to recognize C1 and C2. It is found that Finite State Vector Quantization (FSVQ) is very useful, whose two modified versions, Modified FSVQ (MFSVQ) and the Second Order FSVQ (SOFSVQ), can provide the best recognition performance for C1 and C2 by carefully adjusting a design parameter called characteristic interval. Experimental results show that a recognition rate of 94.1% to 94.7% can be achieved using this system. Such a design is accomplished by carefully considering the special characteristics of Mandarin syllables and initials.en_US
dc.language.isoen_USen_US
dc.relation.ispartofInternational Journal of Pattern Recognition and Artificial Intelligenceen_US
dc.subjectspeech recognitionen_US
dc.subjectVector quantizationen_US
dc.subjectMandarin Chineseen_US
dc.subjectInitial/finalen_US
dc.subjectSyllablesen_US
dc.titleAn Efficient Speech Recognition System for the Initials of Mandarin Syllablesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1142/S0218001490000381-
dc.relation.journalvolume4en_US
dc.relation.journalissue4en_US
dc.relation.pages687-704en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

Page view(s)

136
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋