Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/16695
DC 欄位值語言
dc.contributor.author張耀明en_US
dc.contributor.author屈文鎮en_US
dc.contributor.author陳正宗en_US
dc.date.accessioned2021-04-26T06:59:09Z-
dc.date.available2021-04-26T06:59:09Z-
dc.date.issued2013-03-20-
dc.identifier.issn1674-7348-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16695-
dc.description.abstract本文致力於三維位勢問題的間接變量規則化邊界元法研究,提出了新的規則化邊界元法的理論和方法,構造了與法向量關聯的兩個線性無關的特別切向量,建立與問題基本解有關的量的法向、切向梯度的特性定理,提出轉化域積分方程為邊界積分方程的極限定理,在此基礎上,尋出間接變量規則化邊界積分方程,與廣泛實踐的直接邊界元法比,本文具有優點: (1)降低了密度函數的連續性要求; (2)更適合求解薄體結構問題,因為所給方程中不含超奇異與幾乎超奇異積分,積分的規則化算法更加有效; (3)可計算任何邊界位勢梯度,數值實施時,C0連續單元描述幾何曲面,不連續差值逼近邊界量,針對問題的特殊的邊界曲面,提出一種精確幾何單元。數值算例表明,本文算法穩定、效率高,所得數值結果與精確解相當地吻合。This presentation is mainly devoted to the research on the regularization of indirect boundary integral equations (IBIEs) for three-dimensional problems and establishes the new theory and method of the regularized BEM. The two special tangential vectors, which are linearly independent and associated with the normal vectors, are constructed, and then a characteristics theorem for the contour integrations of the normal and tangential gradients of some quantities, related with the fundamental solutions for 3D potential problems, is presented. A limit theorem for the transformation from domain integral equations into boundary integral equations (BIEs) is also proposed. Based on this, together with a novel decomposition technique to the fundamental solution, the regularized BIEs with indirect unknowns, which don't involve the direct calculation of CPV and HFP integrals, are derived for 3D potential problems. Compared with the widely practiced direct regularized BEMs, the presented method has many advantages. First, the continuity requirement for density function in the direct formulation can be reduced here. Second, it is more suitable for solving the structures of thin bodies, considering the solution process for boundary or field quantities doesn't involve the HFP integrals and nearly HFP integrals so the regularization algorithm to the considered singular or nearly singular integrals is more effective. Third, the proposed regularized BIEs can calculate the any potential gradients on the boundary, but not limited to the normal fluxes, and also independent of the potential BIEs. A systematic approach for implementing numerical solutions is proposed by adopting the C0 continuous elements to depict the boundary surface and the discontinuous interpolation to approximate the boundary quantities. Especially, for the boundary value problems with elliptic surfaces or piecewise plane surfaces boundary, the exact elements are developed to model their boundaries with almost no error. The validity of the proposed scheme is demonstrated by several benchmark examples. Excellent agreement between the numerical results and exact solutions is obtained even with using small amounts of element.en_US
dc.language.isozhen_US
dc.publisherScience China Pressen_US
dc.relation.ispartofSCIENCE CHINA Physics, Mechanics & Astronomyen_US
dc.subject邊界元法en_US
dc.subject三維位勢問題en_US
dc.subject間接變量邊界積分方程en_US
dc.subject奇異積分en_US
dc.title三維位勢問題新的規則化邊界元法en_US
dc.title.alternativeA new regularized BEM for 3D potential problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1360/132012-499-
dc.relation.journalvolume43en_US
dc.relation.journalissue3en_US
dc.relation.pages297-308en_US
item.openairetypejournal article-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1zh-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

Page view(s)

97
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋