Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16721
DC FieldValueLanguage
dc.contributor.authorC.-T. Chenen_US
dc.contributor.authorK.-H. Chenen_US
dc.contributor.authorJ.-F. Leeen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.date.accessioned2021-04-28T06:02:00Z-
dc.date.available2021-04-28T06:02:00Z-
dc.date.issued2007-06-04-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16721-
dc.descriptionJune 04-06,2007, 英國 Ashurst Lodgeen_US
dc.description.abstractIn this paper, the Laplace problem with overspecified boundary conditions is investigated by using the Trefftz method. The main difficulty will appear an obvious divergent result when the boundary condition on an overspecified boundary contaminates artificial errors. The occurring mechanism of the unreasonable result originates from an ill-posed influence matrix. The accompanied ill-posed problem is remedied by using the Tikhonov regularization technique and the linear regularization method respectively, to reconstruct the influence matrix. The optimal parameters of the Tikhonov technique and linear regularization method are determined by adopting the adaptive error estimation technique. The numerical evidence of the Trefftz method is given to verify the accuracy of the solutions after comparison with the results of analytical solution and to demonstrate the validity and instructions of the proposed adaptive error estimation technique. The comparison of the Tikhonov regularization technique and the linear regularization method was also discussed in the example.en_US
dc.language.isoen_USen_US
dc.publisherBEM 29en_US
dc.subjectTrefftz methoden_US
dc.subjectadaptive error estimationen_US
dc.subjectCauchy problemen_US
dc.subjectill-posed problemen_US
dc.subjectTikhonov techniqueen_US
dc.subjectlinear regularization methoden_US
dc.subjectL-curve concepten_US
dc.titleAdaptive error estimation of the Trefftz method for solving the Cauchy problemen_US
dc.typeconference paperen_US
dc.relation.conferenceBEM 29en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeconference paper-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

122
Last Week
1
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback