Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16745
DC FieldValueLanguage
dc.contributor.authorJia-Wei Leeen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.date.accessioned2021-04-28T07:21:06Z-
dc.date.available2021-04-28T07:21:06Z-
dc.date.issued2012-12-12-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16745-
dc.descriptionICOME2012/JASCOME2012, 12-14 December, Kyoto, Japanen_US
dc.description.abstractThis talk performs analytical investigation of the true and spurious eigensolutions and eigenmodes of a prolate spheroidal cavity by using the real-part and imaginary-part boundary integral equation method (BIEM). To analytically study the eigenproblems of a prolate spheroidal cavity, the prolate spheroidal coordinates and wave functions are adopted. The fundamental solution is expanded into the degenerate kernel by using the prolate spheroidal coordinates and the boundary densities are expanded by using the spheroidal harmonics. By this way, the boundary contour integral can be analytically determined through the orthogonal relations. Dirichlet and Neumann eigenproblems are both considered. It is interesting to find that the BIEM using the real or the imaginary-part kernel to deal with a prolate spheroidal cavity yields spurious eigensolutions. This finding agrees with those corresponding to the circular and elliptical cases. The true and spurious eigenvalues in the real-part BIEM are found to be the zeros of the radial prolate spheroidal functions of the second kind or their derivatives. Besides, nonzero field in the domain are analytically derived in cases of the true eigenvalues while the interior null field and nonzero field for the complementary domain are also analytically examined in cases of the spurious eigenvalues.en_US
dc.language.isoen_USen_US
dc.publisherICOME2012/JASCOME2012en_US
dc.subjectBIEMen_US
dc.subjectdegenerate kernelen_US
dc.subjectProlate spheroidal coordinatesen_US
dc.subjectspheroidal harmonicsen_US
dc.subjectnull fielden_US
dc.titleOn the null and nonzero fields for true and spurious eigenvalues of a prolate spheroidal cavityen_US
dc.typeconference paperen_US
dc.relation.conferenceICOME2012/JASCOME2012en_US
item.openairetypeconference paper-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

120
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback